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The quantum interference effects have been studied across many colli-
sion systems with a wide spectrum of energies and particle species. They
were the subject of studies in many experiments using different accelera-
tors. Studying the quantum correlations may provide essential information
to understand the mechanism of hadronization, describing in particular the
space-time structure of the hadronization source. As the measured corre-
lation parameters depend on various observables, such as charged parti-
cle multiplicity, transverse momentum, or hadron mass, it is essential to
model the observed trends properly. In particular, it was observed that
the correlation radii become smaller with an increasing mass of the studied
hadron species, which was a conclusion driven mainly by the LEP mea-
surements performed for a number of different types of hadrons. One of
the approaches aiming at interpretation of the observed dependence of the
correlation radius on the hadron mass is the quantum-mechanical model
employing the Björken–Gottfried condition, suggesting the universality of
the source radius, which is independent of the hadron mass.
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1. Introduction

The nature of multiparticle production in the hadronization process has
been studied for nearly seven decades, yet it remains not fully understood.
Numerous experiments have explored various aspects of quantum interfer-
ence and its dependence on different observables, including charged particle
multiplicity, transverse momentum, hadron rest mass, centrality or rapidity.
The quantum interference effects have been studied across many different
collision systems, particle species, and a wide spectrum of energies [1–8]. The
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correlations arise from the effects of quantum statistics and final-state inter-
actions, both of strong and Coulomb origin. The space-time characteristics
of the hadron emission volume can be investigated through the parameters of
the density function in the region of small four-momentum differences, em-
ploying the quantum interference effect between indistinguishable particles
emitted by a finite-sized source. In particle physics, the Hanbury Brown–
Twiss (HBT) interference effect [9], originally observed in radio-astronomy,
appears as the Bose–Einstein Correlations (BEC) for identical bosons or
Fermi–Dirac Correlations (FDC) for fermions. The Bose–Einstein correla-
tions arise from Bose–Einstein statistics, which permit multiple particles to
occupy the same quantum state. These correlations are manifested by an
increased likelihood of observing identical bosons that originate from a small
region in phase space. They are studied by measuring correlation functions
for pairs or groups of identical particles, providing valuable insights into
the evolution of the hadron source. In particular, the Bose–Einstein and
Fermi–Dirac correlations are employed in the analysis of hadron emitter
radii. The dependence of the correlation radius on the hadron mass, ob-
served in LEP [10–13] and LHC [14–16] data, are interpreted within several
theoretical models. One of them is a quantum-mechanical approach pos-
tulating a universal source radius for all particle species and predicting an
apparent source size as observed in interferometry measurements, which is
smaller than the real size [17–19].

2. Correlation function

The origin of single-particle emission can be described using the Wigner-
function formalism with the source function S(x, p) [20]. In this framework,
the source function represents the covariant Wigner transform of the source
density matrix and reflects the classical probability of emitting a particle
with momentum k at position x, where both x and k are four-vectors. Here,
x = (t, r) denotes the four-vector in spacetime, and p = (E,p) represents the
four-momentum of the emitted particle. The single-particle and two-particle
invariant four-momentum distributions of the emitted particles, N1(k) and
N2(k1, k2) respectively, can then be expressed as [21]

N1(k) =

∫
d4xS(x, k) , (1)

and

N2(k1, k2) =

∫
d4x1d

4x2S(x1, k1)S(x2, k2)
∣∣Ψk1,k2(x1, x2)

∣∣2 , (2)

where Ψk1,k2(x1, x2) is the wavefunction of the two-particle system.
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The two-particle correlation function is defined as the ratio of the two-
particle momentum distribution to the product of the single-particle distri-
butions

C2(k1, k2)=
N2(k1, k2)

N1(k1)N1(k2)
=

∫
d4x1d

4x2S(x1, k1)S(x2, k2)
∣∣Ψk1,k2(x1, x2)

∣∣2∫
d4x1S(x1, k1)

∫
d4x2S(x2, k2)

.

(3)
A key factor underlying the BEC effect is the chaoticity, or complete inco-
herence, of the source. This implies that the phases of the wave function
amplitudes describing boson production fluctuate freely at every point in
space. In this scenario, all phases can be set to zero. To simplify the descrip-
tion, the plane-wave function is considered, where the phase term vanishes in
the incoherent case. Therefore, assuming fully incoherent (chaotic) emission
and no final-state interactions between the particles in a pair (or that such
interactions are experimentally controlled), a plane-wave approximation can
be used to construct a symmetric wave function for a bosonic system

Ψk1,k2(x1, x2) =
1√
2

[
eik1x1+ik2x2 + eik1x2+ik2x1

]
. (4)

By combining Eqs. (3) and (4), the correlation function can be written in
terms of the relative four-momentum of the particle pair, q = k1−k2 as [21]

C2,BEC(k1, k2) ≈ 1 +

∣∣∣S̃(q, P )
∣∣∣2

S̃(0, k1)S̃(0, k2)
≈ 1 +

∣∣∣S̃(q, P )
∣∣∣2∣∣∣S̃(0, P )
∣∣∣2 , (5)

where the Wigner function S̃(q, P ) is the Fourier transform of the source
function S(x, P )

S̃(q, P ) =

∫
d4xS(x, P )eiqx , (6)

and P corresponds to the pair mean four-momentum

P =
k1 + k2

2
. (7)

In practice, the correlation function typically analyzed using a Lorentz-
invariant variable Q is defined as the magnitude of the difference of the
four-momenta of the two particles in a pair

Q ≡
√

−(k1 − k2)2 =
√
M2 − 4µ2 , (8)

where M is the two boson invariant mass, and µ is the boson rest mass.
Then, the correlation function can be approximated as

C2(Q) ≈ 1 + e−R2Q2
. (9)
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The form of Eq. (5) establishes a direct relationship between the observable
correlation function and the assumed (or known) source function distribu-
tion.

A broader class of sources, beyond the simple cases discussed earlier, can
be described by the symmetric Lévy-stable distributions [22]. For static, uni-
variate sources, the Lévy-type correlation function can be expressed as [22]

C2(Q) = N
(
1± λ e−|RQ|α

)
× (1 + δQ) . (10)

The sign is positive for bosons and negative for fermions. The value of R can
be interpreted as the radius of the spherically symmetric emission source vol-
ume, while N is the overall normalization factor. The intercept parameter λ
denotes the extrapolated value of the correlation function at Q = 0 GeV and
is also referred to as the correlation strength. The parameter δ is associated
with long-range momentum correlations. The Lévy stability index α, which
depends on the assumed density distribution, can take values in the range
(0, 2].

3. Dependence of the correlation radius on hadron mass

Measurements of the emitter source radius conducted by LEP experi-
ments [1–4, 10–13] suggest that the correlation radius decreases with parti-
cle mass. Several theoretical approaches have been proposed to explain this
phenomenon. These include semiclassical models based on Heisenberg rela-
tions or the virial theorem [24], as well as the quantum-mechanical model
proposed by Bialas and Zalewski [17].

3.1. Semi-classical models

The BEC or FDC effect reaches its maximum (minimum) when the dif-
ference between the four-momenta q1 and q2 of two indistinguishable hadrons
approaches zero. In this situation, the hadrons are almost at rest in their
centre-of-mass frame, causing their three-momentum difference ∆q to also
approach zero. Applying the Heisenberg uncertainty principle, ∆q∆R ≥ ℏc,
to connect ∆q with the spatial separation of the two particles, one obtains
the relation: ∆q∆R ≈ ℏc = 2µvR = mvR, where µ denotes the reduced
mass of the two-hadron system and R ≡ ∆R indicates the geometric dis-
tance between them. The hadron mass and velocity are denoted by m and v,
respectively. Finally, one obtains the formula [24]

R =
ℏc
mv

=
ℏc
q

. (11)
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On the other hand, using the Heisenberg uncertainty relation in terms of
energy and time, ∆E∆t = q2

m∆t ≈ ℏ, where ∆E is expressed in GeV, ∆t

in seconds, one obtains the relation: q =
√

ℏm/∆t. Inserting this equation
into Eq. (11) yields the following relation between R and m:

R(m) =
ℏc/
√
ℏ/∆t√
m

=
c
√
ℏ∆t√
m

. (12)

Assuming that ∆t is of the order of the timescale for strong interactions,
∆t = 10−24 s, and it is independent of the hadron mass, the following
formula is obtained

R(m) =
A√
m

, (13)

where A ≈ 0.243 fm GeV1/2 . As shown in Ref. [24], this simple model pro-
vides a satisfactory description of the observed hierarchy of the correlation
radii with respect to hadron mass, i.e. Rππ > RKK > Rpp > RΛΛ.

An alternative approach explaining such a hierarchy is based on the
properties of the potential governing the interactions that lead to hadroniza-
tion [24]. Semiclassically, the angular momentum of two particles can be
defined as l = bt|q⃗1 − q⃗2| ≈ ℏc with bt = R/2 for particles at distance R,
the two-particle system can be considered as a bound state under the in-
teraction potential V (R). Thus, the virial theorem can be applied to relate
the average kinetic energy T to the average potential energy, i.e. 2⟨T ⟩ =

⟨⃗bt · ∇⃗tV (R)⟩, where only the transversal direction is considered. Substi-
tuting T by Tt = q2t /m, and inferring that the average interaction volume
depends on the characteristics of V (R) features, one obtains the relation:
R2⟨R⃗ · ∇⃗V (R)⟩ ≈ (ℏc)2

m . The Local Parton Hadron Duality (LPHD) [25]
hypothesis is used to deduce the general QCD potential for interacting two
quarks

V (R) = κR− 4

3

αsℏc
R

. (14)

The values of the potential parameters are derived from calculations of meson
decay constants [24]. It is important to note that the factor R2⟨R⃗ · ∇⃗V (R)⟩
for the QCD potential remains nearly constant over the R-range from 0.14
to 1.0 fm, allowing for the use of a simple relation: R(m) = B/

√
m, where

constant B is consistent with A in Eq. (13).
Both of the aforementioned models explaining the R(m) dependence

suggest that hadrons are not emitted from a unique source, but rather from
sources with radii strongly dependent on the hadron mass. In such a case,
the small radius of the source emitting protons or Λ hyperons would imply
an extremely high-energy density, exceeding 100 GeV/fm3 [26].
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3.2. Quantum-mechanical model

An alternative approach proposed by Bialas and Zalewski [17] suggests
a universal source radius for all particle species and predicts an apparent
source size, as observed in BEC and FDC measurements, that is smaller than
the real size. This model is based on the Björken–Gottfried condition [27],
assuming a linear relation between four-momentum (qµ) and space-time po-
sition (xµ) of the produced particle

qµ = λxµ , (15)

where λ = m⊥
τ is the scalar with respect to the boost along z axis, with

m⊥ = E2 − q2∥ = m2 + q2⊥ denoting the particle transverse mass. The
longitudinal proper time τ from the moment of collision up to the moment of
particle creation is fixed for all particles. In this way, the Björken–Gottfried
condition can be expressed as

qµ =
m⊥
τ

xµ . (16)

In this model, the source function is postulated to be factorized to implement
the Björken–Gottfried condition

S(P,X) = F (τ)S∥S⊥ . (17)

Here, F (τ) indicates the distribution of longitudinal proper time, while P =
(q + q′)/2 and X = (x + x′)/2 are variables related to the position of the
source in space-time, with x and x′ denoting the position four-vectors. Then,
the expressions for longitudinal and transverse components of the source
function are as follows:

S∥ = exp

[
1

2δ2∥

(
P+ − M⊥

τ
X+

)(
P− − M⊥

τ
X−

)]
, (18)

S⊥ = exp

[
−

X2
⊥

2r2⊥

]
exp

[
−

P 2
⊥

2∆2

]
exp

− 1

2δ2⊥

(
P⃗⊥ − M⊥

τ
X−

)2  . (19)

Here, X± = t ± z, P± = P0 ± Pz, the transverse mass of the two-particle
system is M2

⊥ = P+P−, τ2 = X+X−, and P⊥, X⊥ represent the transverse
components of the four-momentum P and the position four-vector X, respec-
tively. The parameters δ⊥ and δ∥ characterize the correlation lengths, which
also determine the size of the particle emission region. The first exponent
in S⊥ represents a standard cylindrically symmetric ‘tube’ in configuration
space, characterized by the radius r⊥, which is related to the source veloc-
ity: v2 = r2⊥/τ

2. The second factor in the S⊥ component implies a natural
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cut-off on the transverse momenta of particles emitted from the tube, with
the ∆ parameter representing the width of the Gaussian-like distribution of
the particle’s transverse momentum. The correlation between the momen-
tum and the point of particle emission is introduced by the final factor in the
transverse S⊥ and longitudinal S∥ components, where the Björken–Gottfried
condition is applied, introducing the dependence of the correlation radius on
hadron mass.

The two-particle density matrix in momentum space can be derived from
the assumed source function

ρ
(
q, q′

)
=

∫
τdτF (τ)ρ∥ρ⊥ , (20)

with transverse and longitudinal components

ρ⊥ =

∫
d2X⊥S⊥e

−iX⃗⊥Q⃗⊥ , ρ∥ =

∫
dη eG , (21)

where pseudorapidity η = log(X+/X−), and

G =
1

2δ2∥

(
P+ − M⊥

τ
X+

)(
P− − M⊥

τ
X−

)
+ i
(
Q0t−Q∥z

)
, (22)

with Q2
0 = Q2

t +Q2
∥, and Q2

t = (q1 − q2)
2, Q2

∥ = (q∥1 − q∥2)
2. The integral of

the orthogonal term, ignoring the normalization and phase factors, can be
derived as

ρ⊥
(
q⃗⊥, q⃗

′
⊥
)

= 2πr2eff e
− P⃗2

2

(
1
ω2+

1
∆2

)
− Q⃗2

⊥r2eff
2 e−i

M⊥τv2

ω2 P⃗⊥Q⃗⊥ , (23)

where ω2 = M2
⊥v

2 + δ2⊥, v2 = r2⊥/τ
2, and r2eff =

r2⊥δ2⊥
ω2 .

The integral of the longitudinal component is derived as

ρ∥ = 2 exp

(
M2

⊥
δ2∥

)
K0(s) , (24)

with K0(s) denoting the Bessel function of variable

s=

M4
⊥

δ4∥
− τ2

M2
⊥

(
P⃗⊥Q⃗⊥

)2
−2i

τM⊥
δ2∥

P⃗⊥Q⃗⊥+
τ2

4M2
⊥
m2

⊥m
′2
⊥ sinh2

(
y − y′

)1/2

,

where Q2
⊥ = (q⊥1 − q⊥2)

2, m⊥ and m′
⊥ denote particle transverse masses,

while y, y′ the rapidities.
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One-particle distribution is taken from diagonal elements of the density
matrix

ρ(q) ≡ dn

dy d2q⊥
= 2πr2⊥δ

2
⊥ exp

[
m2

⊥
δ2∥

]
K0

(
m2

⊥
δ2∥

)
exp

[
−

q2⊥
2∆2

]
I
(
q2⊥

)
,

(25)
where

I
(
q2⊥

)
=

∫
τdτF (τ)ξ−2 exp

[
q2⊥
2ξ2

]
and ξ2 = m2

⊥v
2 + δ2⊥ . (26)

Integral (26) parametrizes the transverse correlation length in formula (25).
To determine the parameters of the model, a data sample of Z0 hadronic

decays from the DELPHI experiment was used [18, 19]. The fit to the q2⊥
distribution for charged pions was performed using parametrization from
Eq. (25). Since particle production occurs within a very narrow time interval,
the distribution of longitudinal proper time F (τ) was replaced by a fixed
value τ0, assuming that the time range for particle production is extremely
small, approximately ∼10−24 s, or equivalently, τ0 ≈ 0.9 fm. Furthermore,
the analysis was restricted to the case with δ∥ = δ⊥ ≡ δ. This was supported
by the fact that the value of δ∥ coincides, within the wide allowed range, with
the relation δ∥ ≈ δ⊥, fulfilled for the quasi-isotropic case. For a fitted set
of parameters v = 0.94, δ = 0.233+0.034

−0.020 GeV and ∆ = 0.421 ± 0.018 GeV,
the correlation functions for each particle species [18, 19] were calculated
according to the formula

C2(q1, q2) =
|ρ(q1, q2)|2

ρ(q1)ρ(q2)
, (27)

where only BEC and FDC effects are considered, with all other correlations
neglected.

Based on the determined two-particle correlation function, the transverse
(R⊥) and longitudinal (R∥) radii were calculated within the model. The
calculations were performed for the masses of the pion, kaon, proton, and
Λ hyperon, and the results were compared to measurements from four LEP
experiments [18, 19] (see Fig. 1). It may be seen that the model accurately
describes the dependence of the correlation radius on hadron mass, including
the inequality R∥ > R⊥. Specifically, the difference R∥ −R⊥ decreases with
increasing mass.

A crucial consequence of the present model is that the observed corre-
lation radius represents only the apparent radius, which is smaller than the
real emission radius. This solves the problem with extremely high-energy
density of the sources emitting protons or Λ hyperons.
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Fig. 1. Longitudinal (R∥) and transverse (R⊥) correlation radii calculated from
the model for pions, kaons, protons, and Λs. Data points at m = mπ repre-
sent the results of two- and three-dimensional analysis of LEP data [18, 19]. For
three-dimensional results the Rt,side was chosen as the representative geometrical
transverse dimension of the pions source. Points at higher masses represent one-
dimensional source radius. Figure adapted from [19].

4. Conclusions

The results of the quantum correlation analyses suggest a strong depen-
dence of the correlation radius on hadron rest mass. The correlation radii
for pions, kaons, protons, and Λ hyperons were determined based on correla-
tion functions, calculated within the framework of the quantum-mechanical
model proposed by Bialas and Zalewski. The observed correlation between
identical hadrons appears to result from the relation between the momentum
and the production point of an emitted particle, as proposed by the Björken–
Gottfried hypothesis. This condition, incorporated into the quantum-me-
chanical model, explains the measured anisotropy of the two-pion correla-
tion function and accurately reproduces the mass dependence of the cor-
relation radius. A key consequence of the model is the universality of the



5-A3.10 M. Kucharczyk

source radius, meaning that the emitter volume’s radius is independent of
the hadron mass. Additionally, the correlation radius determined from the
Bose–Einstein and Fermi–Dirac correlation analyses is an apparent radius,
smaller than the real one.
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