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Since black holes lack a straightforward notion of geometrical volume
due to their event horizon structure and coordinate dependence, various
approaches have been proposed to introduce a meaningful geometric and
thermodynamic volume. In this work, we investigate the stability condi-
tions of AdS black holes with and without volume.
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1. Introduction

Thermodynamics of black holes violates some conventions of classical
thermodynamics. Without volume, extensivity, and thermodynamic stabil-
ity black holes as thermodynamic systems are particular.

In AdS spacetimes, one has the freedom to identify the mass of the black
hole with either the internal energy or the enthalpy of a thermodynamic
framework. In the second case, volume emerges from thermodynamics and
stability is restored [1]. Also, the volumetric extension of the state space of
simple black holes can lead to stability and extensivity, as was shown in [2]
using the ideas of thermodynamics of small systems by Hill [3].

The paper first compares some properties of the Hawking–Page thermo-
dynamics of AdS black holes with the volumetric extension of Dolan in [1].
Then it explores how these principles may be applied by a more general
pressure function and discovers a thermodynamic framework for the Kiselev
black holes, calculating the conditions of their stability.
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2. Hawking–Page phase boundaries

In thermodynamics of black holes in anti-de Sitter space, the geometrical
and thermodynamical quantities are identified through the entropy definition
as the horizon area and through the horizon criterion

M =
R

2

(
1− ΛR2

)
, S(R) = πR2 , (1)

where the invariant mass M = E(R,Λ) is the internal energy. Here, R is the
radius of the horizon and Λ is the cosmological constant. Then, the horizon
or Hawking temperature is identical to the thermodynamic one

TH =
dE

dS
=

1− 3ΛR2

4πR
. (2)

Thermodynamic stability requires positive heat capacity and a further deriva-
tion gives the −1/3Λ ≤ R2 condition. Also, the AdS black hole is considered
stable if its Helmholtz free energy F (T ) = E(T )− TS(T ) is less than zero,
therefore 1/

√
−Λ < R and the corresponding temperature must be greater

than the marginal Hawking–Page temperature THP =
√
−Λ/π. Above THP,

the system favors black hole formation over pure thermal radiation and black
holes remain stable. Below THP, their free energy becomes positive, causing
evaporation. The left side of Fig. 1 shows the temperature–radius functions
with various cosmological constants and also the boundaries of thermody-
namic and evaporation stability.

Fig. 1. The dimensionless temperature (T ) expressed in terms of radius (R) for
AdS black holes with the Hawking–Page(–Dolan) stability and evaporation limits
on the left and the same functions for the Kiselev(–CR) black holes on the right.

3. Thermodynamic volume following Dolan

Alternatively, the thermodynamic state space of AdS black holes can
be extended by volume, treating the black hole mass as enthalpy and the
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cosmological constant as pressure, more precisely p = −3Λ/8π. This way,
we are in AdS spacetime (p ≥ 0) but Λ is not a constant anymore [1, 4]

M =
R

2

(
1− ΛR2

)
= H(S, p) =

1

2

√
S

π
+

4π

3
p

(
S

π

)3/2

, (3)

where the radius is expressed with the entropy defined in (1). The partial
derivatives of the enthalpy give us the thermodynamic temperature which
is identical with the Hawking temperature and the black hole volume

∂H

∂S

∣∣∣∣
p

= T =
1− 3ΛR2

4πR
,

∂H

∂p

∣∣∣∣
S

= V =
4π

3
R3 . (4)

Thermodynamic stability criteria emerge from nonnegative izochoric heat
capacity ∂E

∂T

∣∣
V
≥ 0, and nonnegative isothermal compressibility ∂p

∂V

∣∣∣
T
≤ 0.

The internal energy is E = H − pV = R/2, which makes the first condition
result in Cv = 0. The second condition R ≥ (2πT )−1 gives the minimum
of T (R). This condition is identical to the one we have obtained with the
original Hawking–Page thermodynamics from the condition of nonnegative
heat capacity.

If the Gibbs potential G = H − TS is below zero, the thermodynamic
system does not emit particles to a radiation field1. One can best calculate
this as the function of the pressure and radius of the black hole, and the
condition R ≥ 1/πT emerges, which gives the Hawking–Page temperature
in the zero evaporation limit2. The left image in Fig. 1 illustrates both the
radius dependence of the temperature for Dolan’s thermodynamics as well
as for the Hawking–Page one.

4. Volume and extensivity

The previous thermodynamic systems are degenerate. The Hawking–
Page one is characterized by a single thermodynamic state variable, the
internal energy (or entropy). Its Gibbs potential does not exist. Also, in the
second system, the volume and entropy are not independent as S and V mu-
tually determine each other: V looks redundant. The degeneracy is inherited
from Schwarzschild thermodynamics, and it can be resolved assuming that
the radius encodes a scaling property. Here, the scaling R(E, V ) = RSE

αV β

is chosen according to [2, 6]. Several thermodynamic quantities can be cal-
culated without further ado, e.g. the pressure is p = βE/αV .

1 Which has zero Gibbs potential.
2 Let us mention, that there is no Maxwell rule in the background [5], because here the

Gibbs potential is not related to a chemical potential, lacking a particle exchange.
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We have seen that the internal energy is E = R/2 when the invariant
mass is identified with the enthalpy. The entropy can be expressed as

S (R(E, V )) = πR2 ≈ E2α
(
R3

)2β
, (5)

so 2 = α + 3β must stand. If the pressure corresponds to black body radi-
ation, meaning α = 3β, then α = 1/2 and β = 1/6. The Hawking temper-
ature is identical to the thermodynamic temperature again. Moreover, one
can generalize the thermodynamical framework, where the pressure depends
on both the internal energy and the volume. As an example, let us consider
the following general interpretation of the same horizon condition:

M =
R

2

(
1− Λ(R, p)R2

)
= H(S, p) =

1

2

√
S

π
+

16π2

15
p

(
S

π

)5/2

, (6)

where Λ = −2p(2πR)2/15 is pressure- and radius-dependent. The volume

V =
∂H

∂p

∣∣∣
S
=

(
S

π

)5/2

=
(4π)2

15
R5 (7)

is consistent with the Christodoulou—Rovelli volume [7], namely, it is pro-
portional to R5. Then the stability and evaporation conditions become
1/3πT ≤ R ≤ 2/3πT . The corresponding temperature–radius functions are
shown in the right image of Fig. 1.

From the radius dependence, one can recognise that this is a Kiselev
black hole [8] with parameters w = −5/3 and K = −(4π)2/15. Remarkably,
scaling relations are exactly fixed, since the average pressure p̄ = wE/V
together with the extensive, first-order Euler homogeneous entropy where
α+ β = 1/2 requires α = −3/4 and β = 5/4.

Black holes in the Kiselev spacetimes are in an inhomogeneous fluid–field
environment, with a diagonal energy momentum T ab = diag(ρ, pr, pt, pt) and
the relations ρ = −pr and pt = 2pr between the energy density and pressure
terms [9, 10]. The fluid is isotropic only if w = −1, then it gives the AdS
black hole back. We can see that this value is inconsistent with Dolan’s
thermodynamics, but can be consistently interpreted with the scaling as-
sumption with α = −1/2 and β = 1/2. This way, α + β ̸= 1/2, the black
hole is not an extensive thermodynamic body.

5. Discussion

In the general Kiselev case, the boundary conditions of the fluid–field en-
vironment may appear artificial. However, considering the thermodynamic
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stability of the system, it is reasonable to expect that the spacetime singu-
larity, a black hole, is transforming its continuous environment rather than
existing within a fixed one. This perspective follows naturally from the
dynamical system framework of ordinary thermodynamics [11, 12].

Average pressure may be a too simple thermodynamic representation.
Our calculations indicate that the mixed fluid–radiation environment with
anisotropic energy momentum requires the extension of the thermodynamic
framework.

The work was supported by the grant NKFIH NKKP-Advanced 150038.
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