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Quarkonium bound states are especially promising candidates to test
the probable quantum structure of space-time since they represent a system
with a reasonably small characteristic distance. In this contribution, we
insert this system in a 3-dimensional rotationally-invariant space which is
composed of concentric fuzzy spheres of increasing radius called the fuzzy
onion. Our aim is to extract some consequences of the space’s non-trivial
structure on the quarkonia’s properties.
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1. Introduction

Considering small length scales, approximately of the order of the Planck’s
length, a discrete quantum structure of the space is expected to emerge. One
of the methods for describing this structure stems from non-commutative
(NC) spaces [1]. Opposing to the usual manifolds, coordinates in such spaces
are described by non-commuting operators. In the formulation of quantum
mechanics on the NC spaces, we can define the NC versions of all the relevant
operators and then look for the solutions of the corresponding Schrédinger
equation [2].

The space is constructed as an infinite set of fuzzy spheres [1] with grow-
ing radius, which form a layered structure one could call a fuzzy onion. Our
choice is the two quarks [3|, which orbit so close to each other that they
probe any new features of the space-time better than larger systems [2].

In Section 2, the classical space is tackled: we introduce the Cornell po-
tential, describe the radial WKB approximation, and apply it for the quarko-
nia. In Section 3, the NC space is tackled: we formulate the mathematical
description of the NC QM, show the exact solution for the NC hydrogen
atom, and determine the NC modifications to the quarkonium mass spectra.
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2. Quarkonia in the standard QM

We will deal with the mass spectrum of the bound states of two heavy
non-relativistic quarks with masses mi and meo, where the interaction is
described by the Cornell potential

VQ(T):—§+BT. (1)

The linear part is responsible for the quark confinement and the r—! part
describes the electrostatic-like interaction between charged quarks. Both B
and C' will be treated as free parameters and will be fixed by experimental
data. The observed mass of the bound state is then

Mnl =m1 +ma + Enl . (2)

On the one hand, we will look for corrections due to the NC structure of
the space, but we will also present a modified way to treat the QM problem
with the Cornell potential in the classical space. The binding energies E,;
can be determined from the WKB condition
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where p(r) is the particle’s semi-classical momentum and p(r1) = p(rz) = 0.

To solve the integral (3) for the Cornell potential (1), we use the Pekeris-
type approximation [4|, which describes the expansion of p(r) around the
typical distance of the quarkonia rg = \/C/B. After the calculations [5], we
get the binding energy of the quarkonia in the commutative classical space
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where p is the reduced mass. We substituted the experimental data for 1.5
and 25 states [3| into equation (4), hence we obtained the free parameters C
and B by solving the two equations numerically for the given system. Let us
point out that our results for the masses (gathered in Table 1) are in good
agreement with the experimental data and stand their ground among other,
arguably more sophisticated models, e.g. [6].

The data for the bottomonium and the bottom-charmed meson states
were collected to analogous tables [5]. From them, we have obtained the
typical distance rq =~ 1076 m, which is known to be roughly the size of the
quark bound states [3].

+3VBC, (4)
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Table 1. Mass spectrum of the ¢¢ meson.

c¢ meson | pu = 2.54 GeV B =0.322 GeV? C =0.891
State Particle Present work M,,; [GeV] | Exp. data M, [GeV]
18 J/¥(1S) used for B, C 3.097
28 ¥(25) used for B, C 3.686
35 1 (4040) 3.889 4.040
1P xc1(1P) 3.518 3.511
2P Xc2(3930) 3.823 3.923
1D ¥ (3770) 3.787 3.774

3. Quarkonia in the NC QM

The NC space R3 can be described by a model of concentric fuzzy spheres
with increasing radius. The commutator of coordinates is defined as

(75, 2] = 2i)egpay (5)

where the parameter A describes the fuzziness of the space structure. An
auxiliary Fock space is introduced accompanied by two sets of creation af
and the annihilation a operators; their commutation relations are

{aa,ag] =008, [aa,aﬁ} = {al,a;] =0, a,fe€{1,2}. (6)

The great news is that all the operators of all the relevant physical quantities
and the wave function ¥ can be constructed with this choice of the a and a
operators. The definition of the position operator obeys the commutator (5)

xj = )\aiﬁagaf;, j€{1,2,3}, (7)

where ¢/ is the corresponding Pauli matrix. The Hamiltonian operator
becomes
i = L [af [, 0] + V(R)® 8
= o ok a0 + V@) (®)
Both the exact and the WKB solution of the Schrédinger equation with (8)
for the Coulomb potential Vi (r) = —e?/(4mepr) in RS [2] give

h? m2c2a? \2
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The WKB solution of the Schrédinger equation for the Cornell potential

Vo(r) with the Pekeris-type approximation in R [5], where ¢ = 2uCrq/h?
and b= QMBT% /h? are the dimensionless parameters of the potential, is




6-A17.4 B. BUKOR, J. TEKEL

" o 7i2 B | b(105b? + 62bc + 9¢?) + 4b(c + 3b)I(1 + 1)
n = B toto—=
2uC

2
8[n+§+ b+(l+§)2]
b(c + 3b)*

8m[n+§+ b+(l+;)2]

- (45b — ¢)(c + 3b)* 100, (10)

4
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where 0 = A/rq is the dimensionless fundamental length scale. Calculated
from the Planck’s length (A ~ 1073 m), the potential effect of the non-
commutativity of the space is on the 39*" decimal place in the mass spectrum
of the mesons |5|. These modifications are beyond the limit of accuracy of
any current measurement. However, we can tackle a reversed problem where
we use the uncertainty of the mass of the most precisely measured meson,
the J/1(15) particle — Mgy = (3096.900 4+ 0.006) MeV, to give an upper
bound for the extent of fuzziness: A < 1.11 x 10718 m.

4. Conclusions

We have described the derivation of the masses of the considered mesons
and the first non-trivial correction due to the NC structure, which is of the
order of 1073?, which means we are still far from any reasonably measurable
contribution. In the future, it would be interesting to look further for other
systems, where the effect of the NC space-time could be detected.
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