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Multi-particle production has been under scrutiny in spontaneously bro-
ken scalar theories. In this article, the self-consistent Schwinger–Dyson
equation is solved in the spectral representation, and the multi-scalar pro-
duction rate is calculated. We find an amplitude growing quadratically with
the energy, which leads to an asymptotically decreasing scalar propagator.
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1. Introduction

There are problems with perturbative results in self-interacting scalar
theories at high multiplicities and high energies [1]. Due to the factorially
growing number of diagrams, the h∗ → n×h amplitude grows without limit
and may violate unitarity. Recently, Khoze et al. [2] proposed the ‘Higgs-
persion’ mechanism, where the highly excited Higgs appears only as an in-
ternal, virtual particle, and the off-shell propagator tames the fast-growing
decay amplitude. They claim that if the propagator can be resummed, then
it can suppress the growing high-energy contribution of the decay ampli-
tude. However, the results of Ref. [2] were criticized in Ref. [3], where it was
argued that the propagator diverges and cannot be resummed as proposed
due to the exponential growth of the amplitude and self-energy.

In this paper, we calculate the multi-scalar transition rate by solving the
Schwinger–Dyson equation (SDE) in the dispersion representation of the
propagator and self-energy.

2. Multi-Higgs production

The physical self-interacting single real scalar field φ(x) is the perturba-
tion around the vacuum expectation value v after symmetry breaking. The
Lagrangian is

∗ Presented at the V4-HEP 1 — Theory and Experiment in High Energy Physics
Workshop, Bratislava, Slovakia, 26–28 July, 2023.

(6-A18.1)

https://www.actaphys.uj.edu.pl/findarticle?series=sup&vol=18&aid=6-A18
https://orcid.org/0000-0003-2221-9276


6-A18.2 G. Cynolter

L =
1

2
∂µφ(x)∂µφ(x)−

m2

2
φ2(x)− κ

3
φ3(x)− λ

4
φ4(x) , (1)

where m =
√
2λv and κ = 3λv.

The Rn(p
2) transition rate characterizes the decay of a highly virtual

Higgs boson (|p|2 ≫ m2) into n Higgses, 1∗ → n defined as∫
dΠn|M(1 → n)|2 = Rn

(
p2
)
, (2)

where the |M|2 scattering amplitude squared is integrated over the n-par-
ticle phase space dΠn. Recently, in [1, 2], the transition rate was calculated
close to the threshold using the steepest descent method, valid only in the
λ → 0 limit, λn = fixed ≫ 1, and ϵ = (E − nm)/nm ≪ 1. The peak
rate grows exponentially with the energy E of the initial Higgs boson, with
fixed λ. However, none of the assumed conditions λ → 0, ε = fixed ≪ 1 are
satisfied for λ and E.

3. Solving the Schwinger–Dyson equation

For the spontaneously broken φ4 theory given in (1), we can derive the
following self-consistent equation for the self-energy Π(p2):

Π
(
p2
)
= κ

∫
k1

Gc
2(−k1)G

c
2(k1 + p)Γ3(k1, p)

+λ

∫
k1

∫
k2

Gc
2(k1)G

c
2(−k1 − k2)G

c
2(k2 + p)Γ4(−k1, k1 + k2, p)

+3λ

∫
k1

∫
k2

Gc
2(−k1)G

c
2(−k2)G

c
2(k1+k2+p)Γ3(k1+p, k2)G

c
2(k1+p)Γ3(k1, p) ,

(3)

where Gc
2(k) is the connected two-point function, Γn(k1, k2, . . . kn−1) is the

n-point vertex function [5],
∫
k ≡

∫
d4k
(2π)4

. The generic spectral decomposition
of the scalar two-point function reads

G
(
p2
)
=

iZ

p2 −m2 + iϵ
+

∞∫
ωth

dω
iσ(ω)

p2 − ω + iϵ
, (4)

where Z is the wave function renormalization factor, ωth = 4m2 corresponds
to the two particle threshold. In 3+1 dimensions, the bubble contribution
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has a logarithmic divergence, while the setting sun has quadratic divergence.
The dispersion relation of the renormalized self-energy is defined in the non-
minimal momentum subtraction scheme

ΠR

(
p2
)
=

∞∫
ωth

dω
ρ(ω)

p2 − ω + iϵ

(
p2 −m2

ω −m2

)2

=

∞∫
ωth

dω
ρ̃
(
ω, p2;m2

)
p2 − ω + iϵ

. (5)

The spectral functions σ(ω), ρ(ω) are further related via the trivial identity
G(p2)G−1(p2) = 1, where G−1(p2) = p2 −m2 −ΠR(p

2) [5]

σ
(
p2
)
=

Zρ
(
p2
)

(p2 −m2)2
+

1

p2 −m2
P

∞∫
ωth

dω
σ
(
p2
)
ρ̃
(
ω, p2;m2

)
+ ρ

(
p2
)
σ(ω)

p2 − ω
,

(6)
where P denotes the Cauchy principal value integral and Z is the wave
function renormalization factor. Z satisfies the sum rule Z+

∫∞
ωth

dωσ(ω)=1.
Using the LSZ reduction formula and the optical theorem, we can connect

the transition rate to the renormalized self-energy [4]∑
n

Rn

(
p2
)
= 2πZρ

(
p2
)
. (7)

There are two self-consistent equations for σ(ω) and ρ(ω), Eq. (6) and
Eq. (3), after applying the spectral representations of Eqs. (4) and (5) [4].
They can be solved by iteration [6], starting from the perturbative propa-
gator with vanishing σ(ω). Dimensional analysis determines that at asymp-
totic energies in Eq. (3), the contribution of the second line, the setting-sun
diagram, is the dominant. For the small coupling, λ = 0.125, the spectral
function of the propagator sharply peaks after the threshold, then asymp-
totically goes to zero at high energies, see the left panel of Fig. 1.
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Fig. 1. The σ spectral function of the propagator (left); The transition rate∑
n Rn(E) divided by E2 at high energies (right), λ = 0.125.
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The numerical calculations show that the spectral function ρ(ω), related
to the propagator, grows with p2 at E ≫ m energies. Thus, the summed
transition rate

∑
nRn(E) goes with the square of the energy at asymptoti-

cally high energies E ≫ m, see the right panel of Fig. 1.
The Higgs propagator usually can be written as a geometric series of the

(one-particle irreducible, 1PI) self-energy Π(p2)

G
(
p2
)
=

i

p2 −m2

∞∑
n=0

(
−iΠ

(
p2
) i

p2 −m2

)n

=
i

p2 −m2 −Π (p2)
. (8)

However, if the series does not converge, it cannot be summed up, and
the propagator becomes divergent. In Ref. [3], Belyaev et al. have already
shown that in the solution of [2], the power series (8) diverges at high en-
ergies, E≫m, as the self-energy grows exponentially with

√
p2. However,

considering our solution of the SDE, the spectral function of the self-energy
grows only with p2, thus the series is convergent at any E and one can re-
sum the Π(p2) into the denominator of the propagator. We end up with an
asymptotically vanishing spectral density of the Higgs propagator, as seen in
σ(ω), taming the cross section of the multi-Higgs production in gluon fusion
via an excited, off-shell Higgs [4].

4. Conclusions

We have solved numerically the SDE of the φ4 Higgs model in spectral
representation to study the 1∗ → n multi-Higgs production. A fast con-
verging solution of the SDE was presented. The resulting propagator is well
behaved, summable, and asymptotically vanishes at high energies. Thus,
the cross section of the gluon fusion process (gg → h∗ → nh) goes to zero
in the limit of infinite energy [4], meaning that perturbative unitarity is not
violated in agreement with the renormalizability of the Standard Model.

The author thanks Zsolt Szép and Zoltán Trócsányi for helpful discus-
sions and useful comments.
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