

MULTI-HIGGS PRODUCTION AND UNITARITY*

GÁBOR CYNOLTER HUN-REN-ELTE Theoretical Physics Research Group, Eötvös Lorand University
Budapest, 1117 Pázmány Péter sétány 1/A, Hungary*Received 31 March 2025, accepted 17 October 2025,
published online 19 December 2025*

Multi-particle production has been under scrutiny in spontaneously broken scalar theories. In this article, the self-consistent Schwinger–Dyson equation is solved in the spectral representation, and the multi-scalar production rate is calculated. We find an amplitude growing quadratically with the energy, which leads to an asymptotically decreasing scalar propagator.

DOI:10.5506/APhysPolBSupp.18.6-A18

1. Introduction

There are problems with perturbative results in self-interacting scalar theories at high multiplicities and high energies [1]. Due to the factorially growing number of diagrams, the $h^* \rightarrow n \times h$ amplitude grows without limit and may violate unitarity. Recently, Khoze *et al.* [2] proposed the ‘Higgs-persion’ mechanism, where the highly excited Higgs appears only as an internal, virtual particle, and the off-shell propagator tames the fast-growing decay amplitude. They claim that if the propagator can be resummed, then it can suppress the growing high-energy contribution of the decay amplitude. However, the results of Ref. [2] were criticized in Ref. [3], where it was argued that the propagator diverges and cannot be resummed as proposed due to the exponential growth of the amplitude and self-energy.

In this paper, we calculate the multi-scalar transition rate by solving the Schwinger–Dyson equation (SDE) in the dispersion representation of the propagator and self-energy.

2. Multi-Higgs production

The physical self-interacting single real scalar field $\varphi(x)$ is the perturbation around the vacuum expectation value v after symmetry breaking. The Lagrangian is

* Presented at the V4-HEP 1 — Theory and Experiment in High Energy Physics Workshop, Bratislava, Slovakia, 26–28 July, 2023.

$$\mathcal{L} = \frac{1}{2} \partial^\mu \varphi(x) \partial_\mu \varphi(x) - \frac{m^2}{2} \varphi^2(x) - \frac{\kappa}{3} \varphi^3(x) - \frac{\lambda}{4} \varphi^4(x), \quad (1)$$

where $m = \sqrt{2\lambda v}$ and $\kappa = 3\lambda v$.

The $R_n(p^2)$ transition rate characterizes the decay of a highly virtual Higgs boson ($|p|^2 \gg m^2$) into n Higgses, $1^* \rightarrow n$ defined as

$$\int d\Pi_n |\mathcal{M}(1 \rightarrow n)|^2 = R_n(p^2), \quad (2)$$

where the $|\mathcal{M}|^2$ scattering amplitude squared is integrated over the n -particle phase space $d\Pi_n$. Recently, in [1, 2], the transition rate was calculated close to the threshold using the steepest descent method, valid only in the $\lambda \rightarrow 0$ limit, $\lambda n = \text{fixed} \gg 1$, and $\epsilon = (E - nm)/nm \ll 1$. The peak rate grows exponentially with the energy E of the initial Higgs boson, with fixed λ . However, none of the assumed conditions $\lambda \rightarrow 0$, $\epsilon = \text{fixed} \ll 1$ are satisfied for λ and E .

3. Solving the Schwinger–Dyson equation

For the spontaneously broken φ^4 theory given in (1), we can derive the following self-consistent equation for the self-energy $\Pi(p^2)$:

$$\begin{aligned} \Pi(p^2) &= \kappa \int_{k_1} G_2^c(-k_1) G_2^c(k_1 + p) \Gamma_3(k_1, p) \\ &+ \lambda \int_{k_1} \int_{k_2} G_2^c(k_1) G_2^c(-k_1 - k_2) G_2^c(k_2 + p) \Gamma_4(-k_1, k_1 + k_2, p) \\ &+ 3\lambda \int_{k_1} \int_{k_2} G_2^c(-k_1) G_2^c(-k_2) G_2^c(k_1 + k_2 + p) \Gamma_3(k_1 + p, k_2) G_2^c(k_1 + p) \Gamma_3(k_1, p), \end{aligned} \quad (3)$$

where $G_2^c(k)$ is the connected two-point function, $\Gamma_n(k_1, k_2, \dots, k_{n-1})$ is the n -point vertex function [5], $\int_k \equiv \int \frac{d^4 k}{(2\pi)^4}$. The generic spectral decomposition of the scalar two-point function reads

$$G(p^2) = \frac{iZ}{p^2 - m^2 + i\epsilon} + \int_{\omega_{\text{th}}}^{\infty} d\omega \frac{i\sigma(\omega)}{p^2 - \omega + i\epsilon}, \quad (4)$$

where Z is the wave function renormalization factor, $\omega_{\text{th}} = 4m^2$ corresponds to the two particle threshold. In 3+1 dimensions, the bubble contribution

has a logarithmic divergence, while the setting sun has quadratic divergence. The dispersion relation of the renormalized self-energy is defined in the non-minimal momentum subtraction scheme

$$\Pi_R(p^2) = \int_{\omega_{\text{th}}}^{\infty} d\omega \frac{\rho(\omega)}{p^2 - \omega + i\epsilon} \left(\frac{p^2 - m^2}{\omega - m^2} \right)^2 = \int_{\omega_{\text{th}}}^{\infty} d\omega \frac{\tilde{\rho}(\omega, p^2; m^2)}{p^2 - \omega + i\epsilon}. \quad (5)$$

The spectral functions $\sigma(\omega)$, $\rho(\omega)$ are further related via the trivial identity $G(p^2)G^{-1}(p^2) = 1$, where $G^{-1}(p^2) = p^2 - m^2 - \Pi_R(p^2)$ [5]

$$\sigma(p^2) = \frac{Z\rho(p^2)}{(p^2 - m^2)^2} + \frac{1}{p^2 - m^2} \text{P} \int_{\omega_{\text{th}}}^{\infty} d\omega \frac{\sigma(p^2) \tilde{\rho}(\omega, p^2; m^2) + \rho(p^2) \sigma(\omega)}{p^2 - \omega}, \quad (6)$$

where P denotes the Cauchy principal value integral and Z is the wave function renormalization factor. Z satisfies the sum rule $Z + \int_{\omega_{\text{th}}}^{\infty} d\omega \sigma(\omega) = 1$.

Using the LSZ reduction formula and the optical theorem, we can connect the transition rate to the renormalized self-energy [4]

$$\sum_n R_n(p^2) = 2\pi Z\rho(p^2). \quad (7)$$

There are two self-consistent equations for $\sigma(\omega)$ and $\rho(\omega)$, Eq. (6) and Eq. (3), after applying the spectral representations of Eqs. (4) and (5) [4]. They can be solved by iteration [6], starting from the perturbative propagator with vanishing $\sigma(\omega)$. Dimensional analysis determines that at asymptotic energies in Eq. (3), the contribution of the second line, the setting-sun diagram, is the dominant. For the small coupling, $\lambda = 0.125$, the spectral function of the propagator sharply peaks after the threshold, then asymptotically goes to zero at high energies, see the left panel of Fig. 1.

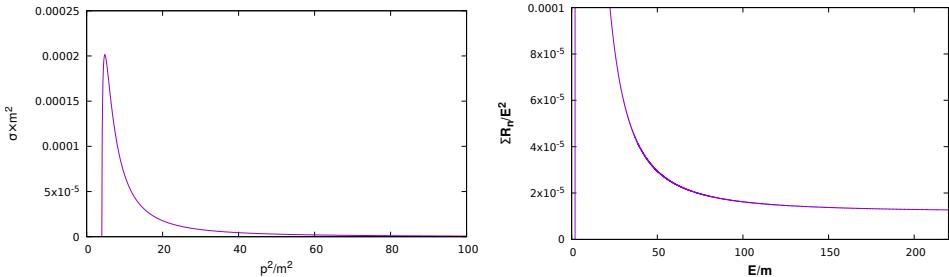


Fig. 1. The σ spectral function of the propagator (left); The transition rate $\sum_n R_n(E)$ divided by E^2 at high energies (right), $\lambda = 0.125$.

The numerical calculations show that the spectral function $\rho(\omega)$, related to the propagator, grows with p^2 at $E \gg m$ energies. Thus, the summed transition rate $\sum_n R_n(E)$ goes with the square of the energy at asymptotically high energies $E \gg m$, see the right panel of Fig. 1.

The *Higgs propagator* usually can be written as a geometric series of the (one-particle irreducible, 1PI) self-energy $\Pi(p^2)$

$$G(p^2) = \frac{i}{p^2 - m^2} \sum_{n=0}^{\infty} \left(-i\Pi(p^2) \frac{i}{p^2 - m^2} \right)^n = \frac{i}{p^2 - m^2 - \Pi(p^2)}. \quad (8)$$

However, if the series does not converge, it cannot be summed up, and the propagator becomes divergent. In Ref. [3], Belyaev *et al.* have already shown that in the solution of [2], the power series (8) diverges at high energies, $E \gg m$, as the self-energy grows exponentially with $\sqrt{p^2}$. However, considering our solution of the SDE, the spectral function of the self-energy grows only with p^2 , thus the series is convergent at any E and one can resum the $\Pi(p^2)$ into the denominator of the propagator. We end up with an asymptotically vanishing spectral density of the Higgs propagator, as seen in $\sigma(\omega)$, taming the cross section of the multi-Higgs production in gluon fusion via an excited, off-shell Higgs [4].

4. Conclusions

We have solved numerically the SDE of the φ^4 Higgs model in spectral representation to study the $1^* \rightarrow n$ multi-Higgs production. A fast converging solution of the SDE was presented. The resulting propagator is well behaved, summable, and asymptotically vanishes at high energies. Thus, the cross section of the gluon fusion process ($gg \rightarrow h^* \rightarrow nh$) goes to zero in the limit of infinite energy [4], meaning that perturbative unitarity is not violated in agreement with the renormalizability of the Standard Model.

The author thanks Zsolt Szép and Zoltán Trócsányi for helpful discussions and useful comments.

REFERENCES

- [1] V.V. Khoze, J. Reiness, *Phys. Rep.* **822**, 1 (2019).
- [2] V.V. Khoze, M. Spannowsky, *Phys. Rev. D* **96**, 075042 (2017).
- [3] A. Belyaev, F. Bezrukov, Ch. Shepherd, D. Ross, *Phys. Rev. D* **98**, 113001 (2018).
- [4] A. Curko, G. Cynolter, *J. Phys. G: Nucl. Part. Phys.* **49**, 115004 (2022).
- [5] V. Sauli, J. Adam, *Nucl. Phys. A* **689**, 467 (2001).
- [6] G. Markó, U. Reinosa, Zs. Szép, *Phys. Rev. D* **96**, 036002 (2017).