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We undertake the issue of flavor symmetries in the context of lepton
masses and mixing which can lead to possible signatures in the current
and future experiments at the intensity, energy, and cosmic frontiers. Giv-
ing an example of the A4 discrete symmetry, we show how to construct
corresponding neutrino mass terms, leading to neutrino mass and mixing
matrices with suitable correlations between parameters and unique phe-
nomenological predictions.
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1. Introduction

Within the known Pontecorvo–Maki–Nakagawa–Sakata parametrization
of the mixing matrix U [1–3], we have three mixing angles: θ12, θ23, and θ13,
and the Dirac CP-violating phase δCP (oscillation experiments are not sen-
sitive to two Majorana phases). The remaining two parameters are mass
squared differences which are connected with solar and atmospheric neu-
trino oscillations: ∆m2

⊙ = m2
2 −m2

1, ∆m2
A = |m2

3 −m2
1|.

The current main questions in neutrino oscillation physics are:

(i) What is the mass ordering of the neutrinos (i.e. sign of |∆m2
32(1)|)?

(ii) What is the octant of θ23?

(iii) Is the CP symmetry violated in neutrino oscillations? (Non-zero δCP

phase).

Hence, still ambiguities are seen over 3 parameters, |∆m2
32(1)|, θ23, and δCP.

One more frequently posed question is what kind of symmetry can be
responsible for different values of mixing angles and masses. For normal mass
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ordering, based on the present NuFIT-6.0 global analysis [4], the central
values of neutrino parameters are

∆m2
21 = 7.49× 10−5 eV2 , |∆m2

31| = 2.513× 10−3 eV2 ,

sin2 θ12 = 0.308 , sin2 θ23 = 0.47 , sin2 θ13 = 0.02215 ,

δCP = 212◦+26◦

−41◦ . (1)

There are essentially three main directions towards understanding neu-
trino mixing structure and mass spectrum: anarchy, textures, and symme-
tries. In the anarchy hypothesis [5–8], the leptonic mixing matrix manifests
as a random draw from an unbiased distribution of unitary 3 × 3 matrices
and does not point towards any principle or its origin. This hypothesis does
not make any correlation between the neutrino masses and mixing para-
meters. However, it predicts a probability distribution for the parameters
which parameterize the mixing matrix. Though random matrices cannot
solve fundamental problems in neutrino physics, they generate intriguing
hints on the nature of neutrino mass matrices. In the texture approach,
some zeros of neutrino mass matrices can be eliminated. More details on
this approach can be found in [9].

Here, we will concentrate on flavor discrete symmetries which are able
to explain the structure of unitary neutrino mixings1 and masses. This is
a very broad subject, treated recently in a review [9], where, in addition,
phenomenological aspects of such models have been discussed. In general,
flavor discrete symmetries can be tested at intensity and energy frontier
experiments, as well as the cosmic frontier. In this short note, we pick up
one representative example of how a model with given flavor symmetry is
constructed to satisfy data in Eq. (1) and show a phenomenological example
of how the model can be tested at one of the mentioned frontiers.

2. Matching A4 discrete group to neutrino mixing and masses

The neutrino mixing matrix U between massive and weak neutrino states
|ν(f)α ⟩ =

∑3
i=1 (U)αi |ν

(m)
i ⟩ fits well to the so-called tribimaximal mixing [14,

15]

UTBM =


√

2
3

1√
3

0

− 1√
6

1√
3

− 1√
2

− 1√
6

1√
3

1√
2

 . (2)

1 In [10], the neutrino mixing matrix is described using singular values which can, in
addition, cover non-unitary effects and the issue of the number of additional right-
handed neutrinos and light–heavy mixings [11]. For more on non-unitary effects, see
[12], and in the context of discrete symmetries [13].
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It appears that the zero element in the above matrix is experimentally small,
so UTBM must be modified. Anyway, the neutrino mixing matrix has a spe-
cial structure which we would like to understand in terms of some underlying
symmetry. Here, we will show the case of A4 discrete symmetry which is
used to construct the appropriate Yukawa couplings leading to the neutrino
mass matrix. The unphysical (non-diagonal) mass matrix can be diago-
nalized to the physical massive states restoring the structure of neutrino
mixings. This is the first step. In the next step, we choose which column
of the original TBM mixing we would like to be kept unchanged, thus we
consider TM1 and TM2 mixing schemes in which columns 1 and 2 in Eq. (2)
remain unchanged, respectively. For step 1, we use the group A4, an alter-
nating group of order 4, i.e., the group of even permutations of four objects.
It has 12 elements and is the smallest non-Abelian group with a triplet irre-
ducible representation, making it ideal for models with three generations of
fermions. Geometrically, it is a symmetry group of a tetrahedron, like for a
diamond, see Fig. 1.

Fig. 1. A4 symmetry as a tetrahedron and the diamond lattice. The diamond lattice
structure is a specific arrangement of carbon atoms in a crystalline form, exhibiting
remarkable symmetry and unique physical properties. One interesting aspect of this
structure is its connection to the mathematical concept of A4 symmetry, which
can be understood through group theory. The diamond lattice is a variation of
the face-centered cubic (FCC) structure. Each carbon atom in a diamond lattice
is tetrahedrally coordinated, bonded to four other carbon atoms. Figure source:
Wikipedia and P. Kuiper.

For a detailed discussion on A4 character table and three-dimensional
unitary representation of the generators, see Refs. [16, 17]. Two generators,
known as S and T , can form all the 12 elements (through multiplications in
all possible ways) which obey the relation

S2 = T 3 = (ST )3 = 1 . (3)

https://commons.wikimedia.org/wiki/File:Diamond_structure.gif#file
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This relation dictates the ‘presentation’ of the group. Therefore, the
three 1-dimensional representations are given by

1 → (S = 1, T = 1) , 1′ → (S = 1, T = ω) , 1′′ →
(
S = 1, T = ω2

)
,

(4)
where ω = e2iπ/3 is a cubic root of unity. Now, the basis for the 3-dimensional
representation is written as

S =
1

3

−1 2 2
2 −1 2
2 2 −1

 , T =

1 0 0
0 ω 0
0 0 ω2

 , (5)

from which all 12 matrices of the 3-dimensional representation of A4 can be
obtained. Alternatively, S, T can be written in another 3-dimensional uni-
tary representation, where S is diagonal. The equivalence between these two
bases and its effect on the relative phases of the neutrino mass eigenvalues
has been discussed in [18].

The multiplication rules of the singlets and triplets are given by [16, 17]

1⊗ 1 = 1 , 1′ ⊗ 1′′ = 1 , 1′ ⊗ 1′ = 1′′ , 1′′ ⊗ 1′′ = 1′ ,

3⊗ 3 = 1⊕ 1′ ⊕ 1′′ ⊕ 3s ⊕ 3a , (6)

where the subscripts “s” and “a” denote symmetric and antisymmetric parts
respectively. In the T diagonal basis [16], writing two triplets as (x1, x2, x3)
and (y1, y2, y3), respectively, we can write their products explicitly as

1 ∼ x1y1 + x2y3 + x3y2 ,

1′ ∼ x3y3 + x1y2 + x2y1 ,

1′′ ∼ x2y2 + x1y3 + x3y1 ,

3s ∼ 1

3

2x1y1 − x2y3 − x3y2
2x3y3 − x1y2 − x2y1
2x2y2 − x1y3 − x3y1

 , 3a ∼
1

2

x2y3 − x3y2
x1y2 − x2y1
x3y1 − x1y3

 . (7)

Here, we show how to use these multiplication rules for A4 applied to be
a symmetry in the neutrino sector. This symmetry in the Lagrangian can
explain the observed neutrino mixing. The complete Lagrangian is discussed
in [19]. For illustration, we consider one chosen piece of the Lagrangian
for neutrino mass contributions in the so-called FSS (flavor–scoto–seesaw)
model (‘skótos’ from Greek means ‘darkness’)

L =
yN
Λ

(
L̄ϕS

)
1
H̃NR + h.c. , (8)

where yN is the coupling constant and NR is the right-handed Majorana
neutrino. The SM lepton doublet L (A4 triplet) contracts with the so-called
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‘flavon’ scalar field ϕS (also triplet) giving representation 1 of A4 in (7).
Taking flavon fields get VEVs along ⟨ϕS⟩ = (0, vs,−vs), the A4 flavor decom-
position for the contribution to the neutrino sector in accordance with (7)
can be written as

L =
yN
Λ

(
L̄1ϕS1 + L̄2ϕS3 + L̄3ϕS2

)
H̃NR =

yN
Λ

(
L̄2vs − L̄3vs

)
H̃NR + h.c.

(9)
Assuming two RHNs (considering the minimal seesaw scenario for the

type-I contribution), with additional flavon ϕA and ⟨ϕA⟩ = (va, va, va), we
get the Dirac neutrino mass matrix

MD =
v

Λ

 0 yN2va
−yN1vs yN2va
yN1vs yN2va

 = vYN , MR =

(
MN1 0
0 MN2

)
. (10)

In the next step, we add small 1-loop mass contributions allowing in the
final accord for the small deviations from the TBM scheme. This additional
mass term helps to explain the ratio of solar to atmospheric mass difference

r =
∆m2

SOL

∆m2
ATM

≃ 7.41× 10−5 eV2

2.51× 10−3 eV2 ≃ 3× 10−2 . (11)

The 1-loop mass term is introduced with an effective interaction of
fermion f , SU(2) scalar soublet η, A4 flavon ϕS (triplet), and ξ (singlet) at
dim-6: LLOOP = ys

Λ2 (L̄ϕS)ξiσ2η
∗f+1

2Mf f̄
cf+h.c., where ⟨ϕS⟩ = (0, vs,−vs),

⟨ξ⟩ = vξ, leading to the mass term (Mν)LOOP = F(mηR ,mηI ,Mf )MfY
i
fY

j
f

with couplings depending on flavons VEVs YF = (Y e
F , Y

µ
F , Y τ

F )
T =

(ys
vs
Λ

vξ
Λ , 0,−ys

vs
Λ

vξ
Λ )T . Here, F(mηR ,mηI ,Mf ) is the loop function, MηR

and MηI are the masses of the neutral component of η.

Fig. 2. Generation of the small 1-loop mass term.

Therefore, the corresponding mass matrix takes the form

(Mν)LOOP = C

 1 0 −1
0 0 0
−1 0 1

 , C = F (mηR ,mηI ,Mf )y
2
s

v2sv
2
ξ

Λ4
. (12)
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Here, F(mηR ,mηI ,Mf ) is the loop function and the effective neutrino mass
matrix is

Mν = −MDM
−1
R MT

D + (Mν)LOOP = (Mν)TREE + (Mν)LOOP

=

−B+C −B −B−C
−B −A−B A−B

−B−C A−B −A−B+C

 ,

A =
v2v2sy

2
N1

Λ2MN1

, B =
v2v2ay

2
N2

Λ2MN2

. (13)

Note that A,B elements are suppressed by Λ2, while C is suppressed by Λ4

(1-loop effect). After rotation by the TBM matrix

M ′
ν = UT

TBMMνUTBM =
1

2

 3C 0 −
√
3C

0 −6B 0

−
√
3C 0 −4A+ C

 , (14)

we arrive at the effective neutrino mixing matrix (TM2 mixing [19])

Uν = UTBMU13 =


√

2
3 cos θ

1√
3

√
2
3 e

iϕ sin θ

− cos θ√
6
+ eiϕ sin θ

√
2

1√
3

− cos θ√
2
− eiϕ sin θ

√
6

− cos θ√
6
− eiϕ sin θ

√
2

1√
3

cos θ√
2
− eiϕ sin θ

√
6

Um . (15)

Um stays for possible Majorana CP-phases, U13 is the standard Euler rota-
tion matrix around the y-axis. Comparing the above mixing matrix with
the standard UPMNS, we get correlations between TM2 parameters

sin θ13 e
−iδCP =

√
2

3
e−iϕ sin θ , tan2 θ12 =

1

2− 3 sin2 θ13
, (16)

tan2 θ23 =

(
1 + sin θ13 cosϕ√

2−3 sin2 θ13

)2

+ sin2 θ13 sin
2 ϕ

(2−3 sin2 θ13)(
1− sin θ13 cosϕ√

2−3 sin2 θ13

)2

+ sin2 θ13 sin
2 ϕ

(2−3 sin2 θ13)

. (17)

3. Phenomenological predictions

The phenomenology of such models like TM2 is very rich [9, 19]. Here, we
give only an example of constraints on parameters coming from correlations
like in (16), (17), and from low-energy LFV neutrinoless double beta decay
process.
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In Fig. 3, we show two numerical examples of phenomenological predic-
tions for the described TM2 model. It is evident from the top plot that only
the higher octant of θ23 is favored (i.e. θ23 ≥ 45◦) in the considered TM2

model. Furthermore, the cyan patch represents the disallowed region for
δCP in order to satisfy the limits on light neutrino masses [20]. The allowed
regions for the Dirac CP phase δCP are given by −1.57 ≤ δCP ≤ 1.37 and
1.4 ≤ δCP ≤ 1.57 for NH.

Fig. 3. Top: Correlation between sin2 θ23 and δCP for NH. The cyan region is
excluded by light neutrino mass constraints. Bottom: mββ versus lightest neutrino
mass for NH (light red) and IH (blue). Green/magenta: 3σ-allowed regions. Gray,
brown dashed, and black dot-dashed lines: limits from KamLAND-Zen+GERDA,
LEGEND-1k, and nEXO. Cyan band: cosmologically excluded.

The bottom plot in Fig. 3 shows the effective mass parameter charac-
terizing neutrinoless double beta decay (mββ) against the lightest neutrino
mass for both NH and IH. The predictions for mββ are 1–30 meV for NH
and 16–60 meV for IH. The green and magenta shaded regions represent 3σ
allowed regions for the mββ predictions for NH and IH, respectively. The ver-
tical cyan-shaded regions represent the cosmological upper limit on the sum
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of absolute neutrino masses. The gray shaded region represents the upper
limit for mββ by combined analysis of KamLAND-Zen [21] and GERDA [22]
experiments and predictions for mββ in the TM2 model fall within this upper
limit. The brown dashed and black dot-dashed lines stand for future sen-
sitivities of the LEGEND-1k [23] and nEXO [24] experiments, respectively.
Thus, these near-future experiments have the potential to almost entirely
falsify the IH prediction and probe a major part of the prediction for mββ

for NH of light neutrino mass.

4. Conclusions

Is there any guiding principle behind the observed pattern of lepton
mixing? (Discrete) flavor symmetry is one such potential candidate where
tiny neutrino mass may originate from hybrid scoto–seesaw scenarios. It
explains the hierarchy of the mass scales involved in neutrino oscillation,
neutrino mixing angles and predicts strict ranges of CP phases, leading
to many phenomenological predictions at intensity, energy and cosmology
frontiers [9]. In the proceedings, we have shown how a specific Lagrangian
term can be introduced for the purpose of specific phenomenological studies
with some correlations among neutrino mass and mixing parameters leading
to unique predictions, here on the neutrinoless double beta decay.

This work has been supported in part by the National Science Center,
Poland (NCN) under grant No. 2020/37/B/ST2/02371.

REFERENCES

[1] B. Pontecorvo, Zh. Eksp. Teor. Fiz. 34, 247 (1957).
[2] Z. Maki, M. Nakagawa, S. Sakata, Prog. Theor. Phys. 28, 870 (1962).
[3] M. Kobayashi, T. Maskawa, Prog. Theor. Phys. 49, 652 (1973).
[4] I. Esteban et al., J. High Energy Phys. 2024, 216 (2024),

arXiv:2410.05380 [hep-ph].
[5] L.J. Hall, H. Murayama, N. Weiner, Phys. Rev. Lett. 84, 2572 (2000),

arXiv:hep-ph/9911341.
[6] A. de Gouvea, H. Murayama, Phys. Lett. B 747, 479 (2015),

arXiv:1204.1249 [hep-ph].
[7] N. Haba, H. Murayama, Phys. Rev. D 63, 053010 (2001),

arXiv:hep-ph/0009174.
[8] J. Gluza, R. Szafron, Phys. Rev. D 85, 047701 (2012),

arXiv:1111.7278 [hep-ph].

http://dx.doi.org/10.1143/PTP.28.870
http://dx.doi.org/10.1143/PTP.49.652
http://dx.doi.org/10.1007/JHEP12(2024)216
https://arxiv.org/abs/2410.05380
http://dx.doi.org/10.1103/PhysRevLett.84.2572
http://arxiv.org/abs/hep-ph/9911341
http://dx.doi.org/10.1016/j.physletb.2015.06.028
https://arxiv.org/abs/1204.1249
http://dx.doi.org/10.1103/PhysRevD.63.053010
http://arxiv.org/abs/hep-ph/0009174
http://dx.doi.org/10.1103/PhysRevD.85.047701
https://arxiv.org/abs/1111.7278


Phenomenology of Flavor Symmetries: An Example 6-A20.9

[9] G. Chauhan et al., Prog. Part. Nucl. Phys. 138, 104126 (2024),
arXiv:2310.20681 [hep-ph].

[10] K. Bielas, W. Flieger, J. Gluza, M. Gluza, Phys. Rev. D 98, 053001 (2018),
arXiv:1708.09196 [hep-ph].

[11] W. Flieger, J. Gluza, K. Porwit, J. High Energy Phys. 2020, 169 (2020),
arXiv:1910.01233 [hep-ph].

[12] M. Blennow et al., Nucl. Phys. B 1017, 116944 (2025),
arXiv:2502.19480 [hep-ph].

[13] B. Karmakar, A. Sil, Phys. Rev. D 96, 015007 (2017),
arXiv:1610.01909 [hep-ph].

[14] P.F. Harrison, D.H. Perkins, W.G. Scott, Phys. Lett. B 530, 167 (2002),
arXiv:hep-ph/0202074.

[15] P.F. Harrison, W.G. Scott, Phys. Lett. B 535, 163 (2002),
arXiv:hep-ph/0203209.

[16] G. Altarelli, F. Feruglio, Rev. Mod. Phys. 82, 2701 (2010),
arXiv:1002.0211 [hep-ph].

[17] H. Ishimori et al., Prog. Theor. Phys. Suppl. 183, 1 (2010),
arXiv:1003.3552 [hep-th].

[18] J. Barry, W. Rodejohann, Phys. Rev. D 81, 093002 (2010),
arXiv:1003.2385 [hep-ph]; Erratum ibid. 81, 119901 (2010),

[19] J. Ganguly, J. Gluza, B. Karmakar, J. High Energy Phys. 2022, 074 (2022),
arXiv:2209.08610 [hep-ph].

[20] P.F. de Salas et al., J. High Energy Phys. 2021, 071 (2021),
arXiv:2006.11237 [hep-ph].

[21] A. Gando et al., Phys. Rev. Lett. 117, 082503 (2016),
arXiv:1605.02889 [hep-ex]; Addendum ibid. 117, 109903 (2016)

[22] M. Agostini et al., Phys. Rev. Lett. 120, 132503 (2018),
arXiv:1803.11100 [nucl-ex].

[23] N. Abgrall et al., arXiv:2107.11462 [physics.ins-det].
[24] G. Adhikari et al., J. Phys. G: Nucl. Part. Phys. 49, 015104 (2022),

arXiv:2106.16243 [nucl-ex].

http://dx.doi.org/10.1016/j.ppnp.2024.104126
https://arxiv.org/abs/2310.20681
http://dx.doi.org/10.1103/PhysRevD.98.053001
https://arxiv.org/abs/1708.09196
http://dx.doi.org/10.1007/JHEP03(2020)169
https://arxiv.org/abs/1910.01233
http://dx.doi.org/10.1016/j.nuclphysb.2025.116944
https://arxiv.org/abs/2502.19480
http://dx.doi.org/10.1103/PhysRevD.96.015007
https://arxiv.org/abs/1610.01909
http://dx.doi.org/10.1016/S0370-2693(02)01336-9
http://arxiv.org/abs/hep-ph/0202074
http://dx.doi.org/10.1016/S0370-2693(02)01753-7
http://arxiv.org/abs/hep-ph/0203209
http://dx.doi.org/10.1103/RevModPhys.82.2701
https://arxiv.org/abs/1002.0211
http://dx.doi.org/10.1143/PTPS.183.1
https://arxiv.org/abs/1003.3552
http://dx.doi.org/10.1103/PhysRevD.81.093002
https://arxiv.org/abs/1003.2385
http://dx.doi.org/10.1103/PhysRevD.81.119901
http://dx.doi.org/10.1007/JHEP11(2022)074
https://arxiv.org/abs/2209.08610
http://dx.doi.org/10.1007/JHEP02(2021)071
https://arxiv.org/abs/2006.11237
http://dx.doi.org/10.1103/PhysRevLett.117.082503
https://arxiv.org/abs/1605.02889
http://dx.doi.org/10.1103/PhysRevLett.117.109903
http://dx.doi.org/10.1103/PhysRevLett.120.132503
https://arxiv.org/abs/1803.11100
https://arxiv.org/abs/2107.11462
http://dx.doi.org/10.1088/1361-6471/ac3631
https://arxiv.org/abs/2106.16243

	1 Introduction
	2 Matching A4 discrete group to neutrino mixing and masses
	3 Phenomenological predictions
	4 Conclusions

