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The neutral Standard Model Higgs boson was discovered in 2012 at
CERN, and the search for further particles of extended models continues,
in particular, the search for an axion-like particle (ALP). Using machine
learning technologies, this analysis addresses the separation of ALP pro-
duction from unwanted background reactions. In this project, the Run 2
data from the ATLAS detector are used and the efficiency as well as the
significance of the machine learning algorithm are optimized as a function
of the theoretical ALP mass.
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1. Introduction

Axion-like particles (ALPs) are heavy particles predicted by some ex-
tensions of the Standard Model (SM). In this analysis, the production of
ALPs that couple to two photons is studied [1-3]. Such a process can
be identified as a resonant peak at the ALP invariant-mass value in the
vy — 77 interaction channel, which is known as light-by-light scattering
(LbL). Apart from ALP production, the LbL process can also occur through
an intermediate fermion or W boson. LbL has been measured at the LHC
in nucleus—nucleus collisions using lead-ion beams (Pb-Pb collisions) [4-7].
Here, the LbL cross section was enhanced due to the high nuclear charge.
These analyses searched for ALPs with the theoretical ALP invariant mass
up to 100 GeV. At higher invariant diphoton masses, the effective luminos-
ity of 4 scattering in pp collisions surpasses that of Pb—Pb collisions [§],
even though the scattering cross section is smaller at lower invariant masses.
In the ATLAS experiment, the diphoton signature can be detected in the
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central detector around the pp beam interaction point. As the interacting
protons travel close to their original beam direction, the ATLAS forward-
proton detectors (AFPs) can be used for their tagging [2]. The production of
lepton pairs by 7 interactions, pp — (yy — 6*8‘2]9(*), has been measured
by ATLAS and CMS using AFPs [9, 10]. Here, p*) denotes a dissociating
proton. This analysis serves as a revision to the original ALP search in
pp interactions in ATLAS [11], by incorporating Artificial Neural Networks
(ANNSs) into the selection process [12]. Using the ATLAS detector, pp colli-
sions are studied in the target invariant mass range of 150-1600 GeV for 13
discrete values with varying step-size. In total, three possibilities for the re-
action are considered. As depicted in figure 1, in the exclusive process, both
protons stay intact. In the single- and double-dissociative processes, one or
both protons dissociate while radiating a virtual photon. It is possible to
tag the undissociated proton. The dissociated proton, however, is in practice
unmeasurable. This search uses 14.6 fb~! of 13 TeV pp collision data and
requires at least one tagged proton. Building on the previous search [13, 14],
the focus is placed on the single-dissociative process. The reason behind this
is that in the double-dissociative and exclusive processes, the sensitivity has
been saturated, and the use of ANNs would not increase it.

(b)

Fig. 1. Feynman diagrams for (a) exclusive, (b) single-dissociative, and (¢) double-
dissociative light-by-light scattering with outgoing photon pairs mediated by an
ALP denoted by a [13].

2. Event samples and preselection

In the ATLAS detector, the forward protons are detected in the AFP
spectrometer system [15, 16]. The AFP system consists of four tracking
modules located at z = 4205 m and z = £+217 m, where z is the direction
of the proton beam. The 4 denotes the two locations of the AFP systems,
denoted as the A(C) side for the +z(—z) direction. Each module houses
a silicon tracker consisting of four planes of silicon pixel sensors. A two-
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level trigger system was used in the initial event detection. The first-level
trigger is hardware-implemented with a sampling rate below 100 kHz. The
second-level trigger is software-based, and it has a reduced average sampling
rate of 1 kHz. As AFP systems reconstruct proton tracks with 70% prob-
ability per bunch crossing, no AFP triggers were used in this analysis [17].
For this search, the background dataset used was collected in 2017 using pp
collisions at a center-of-mass energy /s = 13 TeV with an integrated lumi-
nosity of 14.6 fb~1. A diphoton trigger implemented by two clusters of EM
calorimeter cells inside the central ATLAS detector was used with trans-
verse energies above 35 GeV and 25 GeV, respectively [18, 19|, after which
standard data-quality requirements were applied [20]. For an event to be
measured, additionally, the AFP modules are required to have at least three
operational silicon planes [21]. As in the previous analysis, the sensitivity to
exclusive and double-dissociative events was already saturated to maximum,
this search only covers and updates the search for SD ALP signatures.

The simulated SD signal events were produced using the SuperChic 4.14
Monte Carlo (MC) generator |3, 22-24|. The simulated ALP events cover
ALP invariant masses in the range of mx = 150-1600 GeV. For each in-
variant mass, samples were generated with the ALP-to-diphoton coupling
constant set to f~! = 0.05 TeV~! and natural width of the ALP being

I' = 42': ;fz. Generator-level preselections are applied to the dataset, re-
quiring at least two photon candidates both to have transverse momentum
pr > 40 GeV and the pseudorapidity |n| < 2.37 [13]. An additional pres-
election requirement is for the azimuthal misalignment between the pair of
photons to be very small, as determined by the acoplanarity requirement

AP =118l <001,

3. Main ANN selection

In the previous search [13], the signal events were determined on the
basis of the kinematics of the central photon pair. The fractional energy
loss of the scattered proton was computed from the central detector and
from the AFP stations. Due to the law of conservation of energy, it is re-
quired that both fractional energy losses be almost the same. The idea
behind this search is to replace the main selection with an Artificial Neural
Network that serves as a binary classifier. In practice, the use of an ANN
involves several general steps. First, the input data has to be normalized.
For that purpose, Z-score normalization was used [25]. Then, an ANN serv-
ing as a binary classifier is trained. In this search, an augmented version of
a shallow multilayer perceptron (MLP) was used [12]. The training steps
are performed by an optimizer. In this analysis, the Adam optimizer was
used [26] (improved stochastic gradient descent). During training and val-
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idation, a total of 581216 signal and 68380 background events have been
used with a conservative split of 80/20% for training/validation. To account
for the class imbalance, a weighted cross-entropy loss function was used [27].
Additionally, in order to reduce the Internal Covariance Shift, the batch nor-
malization (BN) technique was added to the model through specialized BN
layers [28]. As the ANN MLP model was shallow, the use of residual con-
nections to mitigate the vanishing gradient problem was not necessary [29].
A final optimization was performed to enhance the more difficult events of
a lower invariant mass. In total, eight times more weight was applied during
the training on the 150 GeV ALP samples in comparison to all other weights,
which led to the model being superior to the cut-based preselection method
on every invariant mass point.

3102:|-v‘ T T T T ¥ 0:|--‘v”‘”.‘...|”‘H‘|..,|£
< OF ATLAS 1 5:_': Vs=13TeV, 146" E
> - 4] = TOF L pp—ppyy E
g f f5=13TeV, 146" ] £ F b ---- Norm. Limit w. ML / cut based
Ke) —— Observed CL; limit E —10F H . . 3
s ™ e Expected CL,limit 7| & ET e A E
g 10 [ Expected =10 _| % _15:_ i M =
S 3 Expected = 2 E E LN N E
5] F [] Expected = 20 3 % —20; (R "y _é
[ 1 5 =25 Y =
[ 12 E - oo E
r 16 -30F SO
E ., 7
i3 E -35F =
N R E N S B B o v I R R
200 400 600 800 1000 1200 1400 41(‘200 400 600 800 1000 1200 1400 1600
my [GeV] m, [GeV]
(a) (b)
g osf
.g C /_/\-\
& 25 y ) \
0.2
0.15
0.1i Data network
C m  Data prev analysis
C Lin interp network
0.05 C Lininterp prev analysis
C Cubic interp network
| T T R BRI BT Bsteted Cubig interp prev analysis

e b e b by
200 400 600 800 1000 1200 1400 1600
m, [GeV]
(c)

Fig. 2. (a) Expected and observed 95% C.L. upper limits on the signal cross section
using the cut-based selection, assuming 100% branching ratio for ALP decay into
two photons, as functions of the hypothetical ALP invariant mass mx. (b) Normal-
ized ratio of the expected 95% C.L. upper limits on the signal cross section obtained
using the ANN method relative to those from the cut-based selection [13, 31]. (c)
Signal selection efficiency as a function of ALP invariant mass mx for the SD
process [13, 31].
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4. Results

During the final prediction of the ANN signal /background, the network
predicts normalized probabilities [30]. These are then thresholded to produce
Boolean decision variables. This threshold is selected so that the number of
signal events detected is the same as in the previous analysis — 441. This
ensures that the comparison is fair as we now directly study the efficiency of
the selection process. For the original pp analysis, the expected, as well as
observed limits at the 95% C.L. are shown in figure 2 (a). The normalized
comparison between the expected limits of both approaches in % is visualized
in figure 2 (b). Furthermore, for additional comparison, the signal selection
efficiencies for the two approaches are shown in figure 2 (c). Further details
are given in reference [31].

5. Conclusions

A search for an axion-like particle (ALP) was performed with the ATLAS
experiment using 14.6 fb~! of /s = 13 TeV proton-proton collision data.
This analysis focused on the single-dissociative light-by-light scattering pro-
cess, pp — p(yy — 77)p"™, where an ALP resonance would appear as a
peak in the invariant mass spectrum. An artificial neural network (ANN)
was employed as the primary selection tool in place of traditional cut-based
kinematic selection.

The ANN-based analysis achieved an improved signal selection efficiency
across the considered invariant mass range of mx = [150,1600] GeV, and
resulted in stronger expected exclusion limits on the ALP expected cross
section at the 95% confidence level. The selection efficiencies were higher in
comparison to the cut-based approach. Compared to the previous analysis,
the use of machine learning increased the sensitivity of the search. These
results demonstrate the potential of ANN-based methods to enhance the
sensitivity of New Physics searches at the LHC. Such methods can be applied
in future searches.
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