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In this contribution, we give a brief overview of the status of pertur-
bative quantum chromodynamics calculations and some recent advances in
computational techniques. We also touch on one particular determination
of the strong coupling constant and highlight the important role played by
precise perturbative calculations in this measurement.
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1. Introduction

The successful operation of the Large Hadron Collider (LHC) at CERN
has opened up a new era of exploration in particle physics, the outstanding
highlight of which so far has been the discovery of the Higgs boson |1, 2].
However, as the direct detection of new phenomena not captured by the
Standard Model of particle physics has eluded us so far, the search for subtle
deviations of measured data from theoretical predictions is taking center
stage. The increased sensitivity and precision of the experiments pose a
formidable theoretical challenge though, as predictions must be computed
at similarly high accuracies. In particular, the sophisticated modeling of the
strong interaction in particle collisions is indispensable.

2. Perturbative QCD

Quantum chromodynamics (QCD) is the non-Abelian gauge theory of
the strong interaction between quarks mediated by gluons [3]|. It is asymp-
totically free, which means that the strength of the interaction diminishes
as the energy scale is raised. This implies that high-energy particle inter-
actions in QCD can be studied using perturbation theory. In this approach,
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quantities of interest such as cross sections are computed as expansions in
some small parameter characterizing the strength of the interaction

o =a§(p) [0 + as(p) o™ O (u) + ad(We™ W) + .. (1)

In the equation above, ag(u) denotes the strong coupling which plays the
role of the expansion parameter, while o©, ¢N¥O (), and e"NVO () refer
to the leading-order (LO), nest-to-leading order (NLO), and next-to-next-
to-leading order (NNLO) contributions to the cross section. The numerical
value of ag at typical LHC energies is around 0.1, so a naive counting puts the
size of the NLO and NNLO corrections at around 10% and 1%, respectively.
However, in practice, this naive estimate can be off by as much as an order of
magnitude. Furthermore, notice the quantity p in Eq. (1). This denotes the
renormalization scale whose value is chosen to be some typical energy scale
in the particular process under study. As the equation implies, the full cross
section on the left- hand side, o, is in principle independent of . However,
due to the unavoidable truncation of the perturbative series in practical
calculations, perturbative QCD predictions retain some p-dependence and
hence come with an associated theoretical uncertainty. The magnitude of
this uncertainty can be decreased by computing higher-order perturbative
corrections. Thus, precise predictions require the evaluation of higher-order
corrections not only from the point of view of the series expansion, but also
from the point of view of controlling the theoretical uncertainty.

The straightforward application of QCD perturbation theory beyond
leading order faces two conceptual challenges. First, one must compute
the quantum mechanical transition amplitudes that describe the scattering
process one is interested in and treat their ultraviolet divergences through
renormalization. In the language of Feynman diagrams, higher-order correc-
tions correspond to diagrams with virtual emissions (loops), and one has to
evaluate the corresponding multi-loop Feynman integrals, which is a highly
non-trivial task beyond the one-loop level. Second, these amplitudes must
be used to compute measurable observables such as cross sections. Care-
ful considerations show that this requires one to also include so-called real
emission contributions, where the emitted extra radiation is not reabsorbed
as in a loop diagram, but is rather “unresolved” (e.g., soft, or collinear to
another parton) in the final state. However, it turns out that even though
predictions for physical observables are finite at each perturbative order (for
properly defined so-called infrared and collinear-safe quantities), the various
virtual and real contributions are separately infrared divergent. These diver-
gences must then be regularized and properly treated before any numerical
calculation can take place.



Perturbative QCD at the Precision Frontier 6-A27.3

Both of the above issues are by now well-understood at NLO accuracy
to the point where the automation of NLO QCD calculations for general
processes has been realised in several program packages [4, 5] and these
days, processes such as eTe™ — 75 [6], pp — W + 55 [7], and pp — ttbb —
p et vbbbb [8] (a2 — 8 process) can be computed at NLO accuracy.
Thus, current frontiers are the computations of 2-loop processes with 4 or
more legs and several masses, as well as 3-loop massless processes on the one
hand, but also the efficient treatment of infrared divergences at NNLO and
beyond on the other.

In this contribution, we will focus on the issue of multi-loop integrals
and present some of the recent progress in their evaluation. As this is a very
large and very active field, the selection of topics to be discussed is necessarily
incomplete and reflects the subjective choice of the author.

3. Multi-loop integrals

In order to get a basic idea about the mathematical difficulties associated
with computing loop integrals, it is enough to examine a one-loop example.
Hence, consider the one-loop diagram of Fig. 1, showing the production of
a Higgs boson in gluon—gluon scattering through a top-quark loop. After
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Fig. 1. One-loop diagram for gg — H mediated by a top-quark loop.

performing tensor reduction, this diagram leads to (among others) the fol-
lowing one-loop integral (we use dimensional regularization in d = 4 — 2¢
spacetime dimensions):

d?l 1
[ ) [ m ] [kt ]

One can perform the integration over the loop momentum [ symbolically
and obtain a concrete integral representation of the result, e.g., through
Feynman parametrization (see e.g., [9])
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1 1
1 7T20/da;0/dy —sxy(l—y)] +0(e), (3)

where s = ¢?. We have obtained a two-dimensional real integral representa-
tion. However, already for this simple case, the solution cannot be expressed
in terms of elementary functions. In the multi-loop case, we generally en-
counter high-dimensional integrals that are very difficult to compute explic-
itly. Indeed, the concrete integrals one obtains in multi-loop computations
become very cumbersome very quickly as the number of loops and/or the
number of kinematic parameters (external momenta and particle masses)
are increased and their direct evaluation is usually not possible.

One very fruitful approach to overcoming this issue is to focus on the
differential equations (DE) satisfied by the function [10-12] in its kinematic
parameters, rather than any specific integral representation. In principle,
deriving the corresponding differential equations is algorithmic and proceeds
through the solution of so-called integration-by-parts (IBP) identities |13, 14].
The basic idea is the following. Instead of concentrating on the integral in
Eq. (2), let us consider the entire family of integrals

ddl 1
(2m)d (12 _ m%)"l [(l _ k1)2 B mﬂ n2 [(l N k2)2 - m%} s -
(4)

IBP identities now follow from the simple observation that, in dimensional
regularization, the integral of a total derivative vanishes

f(n1,ng,n3) =/

di o P
" / (2m) ot (22 = mg)™ {(l —ki)® — m?} " {(l + k2)® — mtz} o )

where the four-vector v* can be chosen to be any external or loop momen-
tum, v = I*, kY, k5. Tt is not hard to see that explicitly performing the dif-
ferentiation then leads to linear relations between fs with shifted arguments
(IBP identities), implying that the set of f(n1,n2,n3) is not independent. In
fact, it can be shown that the number of independent integrals is finite [15]
and this (non-unique) set is called a set of master integrals. Evidently, any
f(n1,n2,n3) can be written as a linear combination of master integrals. Al-
though in principle this is straightforward [16], we stress that in practice,
the efficient generation and solution of IBP identities is highly non-trivial
and an active area of research.

It is now conceptually straightforward to derive a set of differential equa-
tions for the master integrals. Indeed, differentiating with respect to kine-
matic parameters (m; and s in the example above) inside the integration,
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it is clear that the derivative of any master integral (and any f in general)
will be just a linear combination of fs with shifted arguments. But then
this derivative can be written in terms of master integrals using the IBP
identities. In this way, one can derive a system of first-order, homogeneous,
linear differential equations for the master integrals of the form (here we use
Z, to denote the set of kinematic parameters)

amf (67 xn) = Am(ea xn)f (67 xn) ) (6)
where 0, = %’m and each A,, is an N x N matrix, where N is the number
of master integrals. One may then attempt to solve this set of differential
equations to obtain the master integrals which then allows one to compute
any integral in the entire family.

The method of differential equations outlined above is in itself not new
and has been used to evaluate multi-loop integrals for many important pro-
cesses in the past. However, in recent years, several new developments have
made the method even more powerful. In the following, we will briefly touch
upon three broad directions of study:

1. Analytic approaches: recent advances include the understanding of a
“g00d” choice of basis of master integrals and of the class of functions
that arise as solutions when using such a basis.

2. Numerical methods: developments related to obtaining numerical so-
lutions with “arbitrary” precision through generalized power series ex-
pansions.

3. Initial conditions: the auxiliary mass flow method provides a new,
general solution for obtaining initial conditions.

Starting with developments in the analytic understanding of the DE
method, a very important realization was that a proper choice of the basis
of master integrals leads to an algorithmic solution of the DEs [17]. The idea
is the following. In practical calculations, we are interested in the Laurent
expansion of the solution in the parameter of dimensional regularization, e.
With this in mind, let us choose a new basis of master integrals, ¢, related to
our original basis as f = T§ for some invertible matrix T'(¢, z,,). Substituting
this into Eq. (6), we find

amg(eﬂ .%'n) = Bm(ev xn)§(€7 .’L‘n) ’ (7)

where

By =T 'A,T -T7'9,T. (8)



6-A27.6 G. SOMOGYI

Now, if we are able to find a transformation 7" such that the € dependence
in B, factorizes and appears only in the form

B (e, 2,) = €Bp (), 9)

then we can immediately construct the Laurent expansion (in €) of the solu-
tion g in terms of so-called iterated integrals [17|. In many cases, the iterated
integrals which arise take the following form:

z d Y1 d Yn—1 d
Gla o vaiz) = [ B[S [ G )
Y1 —ax Y2 —az Yn — Qn
0 0 0
The functions G(aq,ag, ..., ay; z) introduced above are called multiple poly-

logarithms (MPLs) [18] and due to the developments of the last decade [19—
21], the properties of these functions are quite well understood. Indeed,
many tools for the manipulation and numerical evaluation of MPLs have
been implemented in publicly available packages [22—24] and analytic results
obtained in terms of MPLs can readily be used in explicit computations of
physical observables. Although a thorough understanding of MPLs has al-
lowed very impressive progress in terms of obtaining analytic results, it is
now well-established that not all loop integrals can be expressed in terms
of them, and more complicated cases (typically at two or more loops and
with massive particles) lead to iterated integrals beyond MPLs. Here we
cannot enter into any of the rather elaborate technical details and note only
that the study of the appropriate generalizations (such as elliptic MPLs) is
currently a very active area of research.

Turning to the topic of numerical methods, we begin by noting that of
course in practical calculations, what really matters is the ability to obtain
the numerical value of the solution at any given point. Thus, the ques-
tion arises as to whether it is possible to solve the set of DEs numerically.
While the numerical solution of DEs is a very well-known problem of nu-
merical analysis, the particularities of loop integrals demand some unique
considerations. First, the structure of the solution for loop integrals is typi-
cally complicated and may contain poles, cuts, and logarithmic singularities.
Hence, a naive numerical approach can easily be unstable or even deliver re-
sults that are outright wrong. Second, for phenomenological applications, it
is of paramount importance to guarantee a high level of numerical accuracy,
typically to at least 16 significant digits, the precision provided by standard
double-precision floating-point arithmetic. These issues led in recent years
to the development of the method of generalized power series for the nu-
merical solution of DEs [25]. Without entering into technical details, the
essential idea is that around any point sg, the solution to the DEs is locally
represented by a generalized power series of the form
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oo N
f(s) = chj,k(s —s0) (s —s9), reqQ. (11)

7=0 k=0

Here, s is a variable parametrizing a line segment in the neighbourhood of the
point sg, where we assume an initial condition is known. After substituting
a truncated form (in j) of this ansatz into the DEs, the ¢; , coefficients can be
determined algebraically. Numerical accuracy can be increased, in principle,
arbitrarily by simply retaining more terms in the ansatz. As noted above,
the form of the solution in Eq. (11) is valid only locally around the point
so. Hence, obtaining an evaluation at any given point generally requires
that the solution be built up in several segments. Importantly, though, the
construction of a suitable integration path can be performed algorithmically.
This has allowed the construction of several packages implementing these
ideas [26-28].

Last, we touch upon the issue of initial conditions. Obviously, in order to
obtain explicit numbers from the solution of DEs, whether by evaluating an
analytic formula or directly via numerical methods, initial conditions must
be specified. Traditionally, initial conditions are computed by looking for
a point or limit at which the integral simplifies and is amenable to direct
calculation. Typical choices might be the vanishing of some mass parameter
or kinematic invariant or the limit in which some mass or invariant goes to
infinity, and the correct choice requires a case-by-case study of the problem.
It is then important to understand if the computation of initial conditions
can be made systematic. This question was answered in the affirmative in
recent years and the so-called auxiliary mass flow (AMFlow) method [29]
provides a general solution. The essential idea of the method is to introduce
a non-physical mass-like parameter 7 into loop integrals (such that n = 0 cor-
responds to the original integral) and to study the behaviour of the solution
with respect to this parameter. It is then found that in the n — oo limit,
the integrals always simplify, so this limit is a good choice for computing
initial conditions. However, what makes the AMFlow method particularly
powerful is that the basic construction can be iterated. Hence, if the n — oo
limit of the starting integral is still too difficult to compute, one can simply
treat this as a new integral to be evaluated and apply the procedure once
more, obtaining an initial condition for this new integral that is further sim-
plified. It can be shown that in this way, any initial condition calculation
can be reduced to a trivial one [30]. Finally, a differential equation for the
n-dependence of any integral is constructed with the IBP method, and this
DE is solved to evolve the initial condition at 7 — oo to the physical point
17 = 0. The AMFlow method can naturally be merged with the method of
generalized power series, which, in principle, allows the automation of the
numerical calculation of loop integrals [31].
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The advances for computing loop integrals described above (along with
methods for dealing with IR singularities which we have not addressed) have
led to a wealth of impressive results in recent years. Some selected highlights
include the computation of: H + j production at NLO with exact quark
mass dependence [32, 33|; three-loop corrections to gg — H production
with exact top-quark mass dependence [34, 35]; heavy-quark production in
ete™ annihilation at N3LO [36]; 2-jet and 3-jet production at the LHC at
NNLO [37, 38]; three-loop amplitudes for 2 — 2 parton scattering [39—
41]; differential Higgs boson production at N3LO [42], and pp — WH/ZH
production at N3LO [43].

4. The strong coupling from Z boson recoil:
a recent precision highlight

Finally, to illustrate the impact of higher-order corrections in actual mea-
surements, we consider the recent determination of the strong coupling from
the recoil of Z bosons by the ATLAS experiment [44]. The leading-order pro-
cess of Z-boson production and subsequent decay to a lepton pair proceeds
via the electroweak interaction, and at this order, the transverse momentum
pr of the Z boson is zero. However, once QCD radiation from the initial-
state quarks is taken into account, a non-trivial pt spectrum is generated.
Clearly, the hardness of this spectrum is a measure of the strength of the
strong interaction and can be used to determine ag. This measurement is
particularly attractive not only due to the low backgrounds that allow one
to collect very precise experimental data, but also due to the availability of
highly accurate theoretical predictions.

In particular, perturbative predictions for fiducial cross sections for the
basic pp — Z/y* — 11~ process have been computed to N3LO accuracy in
perturbative QCD [45] and even approximate N*LO results are now avail-
able [46]. Moreover, resummed predictions for small pr have been computed
at N*LL order [46]'. Owing to the high perturbative order of the calcula-
tion, the theoretical predictions have very small uncertainty. Thus, the final
extraction of the strong coupling yields the result

as(Mz) = 0.1182810-5008¢ (12)

making this the most precise experimental measurement of ag(Mz). We
stress that higher-order corrections play a crucial part in reducing theoretical
uncertainty, which ultimately leads to the very impressive precision of the
final result.

L It is beyond our scope to discuss resummation in any detail, but very roughly, it
amounts to summing logarithmically enhanced (for small pr) terms of the form
a2 In®*" " (pr/Q) (“leading log”, LL), o In*"~2(p1/Q) (“next-to-leading log”, NLL),
etc. to all orders in perturbation theory.
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5. Conclusions

In this contribution, we gave a brief overview of some selected topics
in perturbative QCD. In particular, we focused on modern developments in
computational techniques used to evaluate loop integrals. In order to illus-
trate the impact of higher-order calculations in phenomenological studies,

we briefly discussed a recent measurement of the strong coupling by the
ATLAS Collaboration.
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