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In order to numerically compute scattering cross sections in QCD, one
needs to deal with various kinematic divergences that appear at interme-
diate stages of the calculation. One way of doing this is by setting up an
IR subtraction scheme. In this paper, we give an update on the status of
extending the CoLoRFul subtraction scheme, which has been successfully
used in the past for processes with only final-state hadrons, to hadron—
hadron collisions. In particular, we discuss the analytic computation of the
integrated counterterms.
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1. Introduction

Despite the tremendous success of the Standard Model (SM) of particle
physics, it is by now well-known that the appearance of New Physics at
some energy scale is inevitable. Strong hints that lead towards this con-
clusion include the apparent existence of dark matter and dark energy, the
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infamous matter—anti-matter asymmetry, and the tiny neutrino masses. Un-
fortunately, no convincing evidence of New Physics has been found at high-
energy colliders such as the LHC. This, of course, does not necessarily mean
it is not there. In particular, beyond the SM physics signals could come to
us indirectly as small deviations between SM predictions and experimental
measurements. This motivates the push towards higher precision of theo-
retical predictions. In a perturbative quantum field theory context, this, of
course, means computing higher-order corrections to physical observables.
Such higher-order computations are complicated due to the appearance of
various kinematic divergences. In particular, problems arise when loop mo-
menta become large (leading to UV singularities) and when momenta be-
come soft and/or collinear to one another (leading to IR singularities). The
former are treated once and for all by renormalization. The latter, in prin-
ciple, cancel for so-called infrared safe observables [1] when all perturbative
contributions are properly taken into account. This is a direct consequence
of the Kinoshita-Lee-Nauenberg theorem [2-4] and would be the end of the
story if one could perform the computation, in particular the phase space in-
tegrations, analytically. In practice, this is rarely the case however, and one
needs to turn to numerical methods. As such, the IR divergences need to be
treated explicitly. One way of doing so is by setting up a local subtraction
scheme, which entails the construction of an approximate cross section that
matches the point-wise singularity structure of the original one. This boils
down to a redistribution of the IR singularities leading to separately finite
blocks, which can then be evaluated numerically. In the context of strongly
interacting particles, the construction of this approximate cross section is
guided by factorization and the universal nature of the singularity structure
of QCD matrix elements [5-7]. Of course, whatever was subtracted from the
cross section to make it IR finite needs to be integrated over the appropriate
phase space and added back. These integrations are performed analytically.
This way, one can make sure that the subtraction scheme actually works
(i.e., that poles cancel analytically). At NLO accuracy, the cancellation of
IR divergences by way of local subtractions is considered to be solved [8].
The extension to NNLO, however, is a subject of active research [9-16]. In
this contribution, we give an update on the status of the CoLoRFul frame-
work [17], which so far has been successfully applied to processes with only
final-state hadrons. In particular, we discuss the analytic integration of the
subtraction terms for hadron-initiated processes.

This article is organized as follows. In Section 2, we briefly review the
CoLoRFul subtraction scheme at NNLO accuracy. The next section then
provides an overview of the main steps in the analytic computation of the
integrated counterterms, while Section 4 introduces the Fortran implemen-
tation of the scheme, dubbed NNLOCAL. A brief summary and outlook are
presented in Section 5.
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2. Review of the subtraction scheme

We consider a hadron collision leading to the production of some colour-
singlet state X and m jets. At NNLO, the associated partonic cross section
reads

ANLO / doRR Ty + / AoBY | T + / oV 7,

m+2 m+1 m
+ / doS g1 + / do 2 J,, (2.1)
m+1 m

in which we explicitly suppress the dependence on partonic momenta and the
renormalization and factorization scales. The top line contains the double
real (RR), real-virtual (RV), and double-virtual (VV) contributions, while
the bottom line incorporates the collinear remnants. The latter only appear
for hadron-initiated processes and take into account PDF renormalization.
For an infrared safe jet function J,, the full sum in Eq. (2.1) is finite. How-
ever, separately, the integrals diverge and require regularization. For ex-
ample, in the CoLoRFul framework, the RR cross section is regularized as
follows:

A= [ {0t s = dol i s ol
m+2
(2.2)
Per construction, this expression is finite in four dimensions. Each term on
the right-hand side of Eq. (2.2) is constructed in such a way that it cancels
a specific kinematic divergence:

RR,A . " . . .
— do,, )y ' cancels the singularities coming from a single unresolved emis-

sion,

— dazlif ? cancels the singularities coming from a double unresolved

emission, and

— doii’f 2 cancels the singularities coming from single (double) unre-

RR,A RR,A
m+2 ? (d0m+2 ')

These counterterms now need to be added back, integrated over the ap-
propriate phase space. In this work, we focus on the integral of the Ajs
approximate cross section, which needs to be added to Eq. (2.2) as

- / / dofRohz | g (2.3)

m 2

solved limits in do

In the following, we will concentrate on the production of a colour-singlet
final state, i.e. m = 0.
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3. Integrating the A5 subtraction terms

We are interested in the analytic computation of the integral in Eq. (2.3).
The explicit construction of the Aj9 approximate cross section in the colour-
singlet case will be discussed in detail in a future publication. Here, we
simply state that the complete set of Ajo counterterms leads to 104 basic
integrals. These need to be calculated to the appropriate order in the di-
mensional regulator . In this paper, we give a generic overview of the steps
needed in the integration procedure, leaving the explicit computation for a
future publication. In general, the integrated counterterm, which we denote
by ZC, contains some complicated multidimensional integrals. For example,
we often need to compute four-fold integrals of the type

1 1 1 1
7C = / di1a / dy / dé, / A8y F(Ear €0 1 153 €) | M (apas ope) . (3.1)
0 0 0 0

Z(T]a’nb;s)

Here, M(pq, pp) is the Born matrix element for the a(p,)b(py) — X process.
The integrand f(&q, &y Na, Mp; €) s typically some complicated function of the
integration variables and €. For example, without providing any details, one
particular form that we encounter is the following;:

— (2 - ga + nafa - gb + 77b£b)_1+28

(=L4m) &+ (=14 M) &a (T + (=1 +m) &)
x| (0 (=1 80+ m2n (1 +€2) + ma(L =y (ot 2 (=1 +60) €a) — 26

s2m + (~1m? &) | (1) ) gt el

Xfa_e(l - €a+77a£a)7€(2_£a+ naéa)is(l +77a _fa ‘f‘naéa)i (1 _fb)i a
XE (L= &+ &) T2 =&+ ) T T (L — & )T

X (Na + Mo — M€ + Nab€a — Nabo + Mamés) 722 — (1 — m)&
—(1=ma)&a(l — (L —m)&)) (1 — &) (L — (1 — 75)&) + 1a(m + &a

—&abp + M€ap)) (—(1 = &) (Ea — &) + m&o(—1 — Ea + 2&) + 1a(m + &a
—Eabp +méas) — 1 (~1+E)) - (3.2)

The final result of the integration procedure is expected to contain multiple
polylogarithms (MPLs) [18]

f (§a7 gba Nas Tlv; 6) =

z

G(ai,...,an;2) :/ dt G(ag,...,an;t), G(z)=G(;2)=1. (3.3)

t—a1

0
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For this reason, we make intensive use of the PolyLogTools package [19].
Assuming we start with the inner integration over &,, the main steps to
compute the integral in Eq. (3.1) can now be summarized as follows:

1. Disentangle any overlapping singularities in the integrand using sector
decomposition [20]. This way, one obtains a form of the integrand in
which all singularities are factorized.

2. In order to obtain a solution in terms of MPLs, all higher-order poly-
nomials in the denominators of the integrand should be factorized. As
generically we have quadratic and quartic polynomials, this factoriza-
tion will lead to polynomials of the remaining variables with fractional
exponents 1/2 and 1/4. These should be rationalized, which can be
achieved automatically using the RationalizeRoots package [21].

3. Finally, before performing the integration, the integrand needs to be
partial fractioned in the integration variable. Due to the complexity
of our expressions, this turned out to be a major bottleneck. This
led us to develop a new routine for the computation of univariate par-
tial fraction decompositions called LinApart [22]. The latter is based
on a closed-form expression for the decomposition following from the
residue theorem and leads to significant speed-ups with respect to pub-
licly available tools.

After these three steps, one can analytically perform the &,-integration using
the GlIntegrate command provided by PolyLogTools. The same steps should
then be repeated for the £,-integration, leading to a complicated expression
Z(na,mp; €)- Finally, we still need to perform the integration over 1, and 7,

1 1
7C = / da / A (s 1y €)M (1aps 16032 - (3.4)
0 0

One needs to be careful with the interpretation of this integral, as Z(nq, np; €)
actually diverges when any of the integration variables approaches one

Z(1,mp;) — 00, Z(Ng, L;€) — oo, Z(1,1;¢e) = . (3.5)

For this reason, we require an additional regularization, which is accom-
plished by means of a distributional expansion, i.e. a reinterpretation in
terms of delta functions and plus-distributions. This is done by setting up
an appropriate subtraction. In particular, we use the method of expansion
by regions [23] to compute the asymptotic behaviour of Z(n,, np; €) in all lim-
its with the help of the asy package [24, 25]. The full integrated counterterm
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then takes the form

= /dna dnp {[Z(Ma, m; €)]| M (NaPas m6pb) |

~[La Z(nas 13 €)M Pas m606) [ = [Lb Z (110, 3 €)] | M (1apas o) |
— ([Lab Z(na; i €)] — [LaLab Z(1a; M3 €)]

—[LoLab Z(na, m; €)]) M (pa, pb)|* + [T La Z(np; €)]| M (pa, mops)|*
+[I Lt Z(1a; €)]| M (napa, po)|* + (I Lab Z(€)] — [ILaLab Z(my; )]

~[ILyLab Z(na; €)]) M (pa, o) I* } (3.6)
with
Lo Z(ng,mp;e) = 1im I(na,nb;e), (3.7)
1
ILaZ(mie)] = [ dna L ZOmmi0)] (38)
0

and similarly for Ly, I Ly etc. This methodology was used for all integrals
in A12.

4. Putting everything together: NNLOCAL

All analytic formulae have been implemented in the Fortran code called
NNLOCAL'. As an example of the application of our code, we considered
gluon fusion Higgs production in an effective theory in which the top quark
is integrated out. Furthermore, for the moment we assume there are no light
quarks, i.e. ny = 0. After combining the integrals of the A2 counterterms
discussed in this article with all the other integrated counterterms and the
known poles of the collinear factorization, we have verified analytically that
all poles cancel the ones of the partonic matrix elements at every order in the
dimensional parameter €, proving that our subtraction works as expected.
Furthermore, at the inclusive level, we can compare our predictions with
those of existing tools, such as n3loxs [26]. For this comparison, we per-
formed calculations for the LHC with 13 TeV center-of-mass energy using
the NNPDF31 nnlo_as 0118 PDF set [27]. As highlighted in Table 1, we

find sub-percent agreement for various values of the Higgs mass.

! More details on the code were provided during a talk at the HP2 conference by
F. Tramontano, https://agenda.infn.it/event/35067/contributions/241516/
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Table 1. Comparison of inclusive gg — H cross-section predictions at NNLO
accuracy between n3loxs and NNLOCAL for the scale choice ur = up = myg. The
errors on the results obtained with NNLOCAL represent the estimated uncertainties
of the Monte Carlo integrations, while the estimated uncertainty of the n3loxs result
is beyond the last displayed digit in each case.

my [GeV] | n3loxs (gg) | NNLOCAL (gg)
125 42.934 pb | 42.84 £ 0.08 pb
250 9.7290 pb | 9.717 £ 0.017 pb
500 1.6253 pb | 1.622 + 0.003 pb
1000 173.59 fb 173.5 £ 0.3 fb
2000 8.7835 fb 8.781 £ 0.017 b

5. Summary and outlook

The application of the CoLLoRFul subtraction scheme to colour-singlet
production in hadron—hadron collisions at NNLO accuracy is now within
reach. In particular, all integrated counterterms have been computed, and
the scheme is implemented in the Fortran code NNLOCAL. For now, the latter
was used to compute gluon fusion Higgs production in an effective approach,
and the extension to full QCD is in progress.
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