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By considering an ansatz for (1 + (3 + n))-dimensional static space-
time with three-dimensional spherical symmetry, we find different classes
of vacuum solutions of Einstein field equations. A class of solutions with
nontrivial extension of the Schwarzschild spacetime with extra dimensions
features unusual properties, which may provide a possibility to address
problems of dark matter and dark energy.
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1. Introduction

The Schwarzschild spacetime [1] is one of the most important solutions
of Einstein field equations. Its modification to an arbitrary number of space
dimensions was first found by Tangherlini [2]. Later, the motivation for extra
dimensions originated mainly from Kaluza–Klein models [3] and string the-
ory [4]. This paper provides an analysis of a special class of vacuum solutions
of Einstein field equations in 1+(3+n) dimensions under the assumption of
spherical symmetry in the three-dimensional part and Euclidean symmetry
in the n-dimensional part, SO(3)× E(n).

The following Section 2 reveals two sets of such solutions, Section 3 con-
tains an analysis of their properties, and in the final Section 4, we briefly
discuss the possibility of potential implications for problems of dark matter
and dark energy. We use conventions with the light speed set to unity and
−,+,+, . . . signature. Lowercase Latin indices indicate three space coor-
dinates, i = 1, 2, 3, capital Latin indices run through n extra dimensions,
A = 1, . . . , n, and all spacetime indices are collectively denoted by Greek
letters, µ = 0, i, A.
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2. Vacuum solutions

It is straightforward to find a vacuum solution of Einstein field equations
with SO(3)× E(n) symmetry in the form

ds2 = −fαdt2 + fβdr2 + r2dΩ2
(2) + fγδABdζ

AdζB , (1)

where dΩ2
(2) = dϑ2 + sin2 ϑdφ2, function f depends only on the radial coor-

dinate r, and α, β, and γ are constants.
There are two sets of solutions different from (1 + (3 + n))-dimensional

Minkowski spacetime. For the first one, we have γ = 0, α = −β, and the
spacetime metric reads

ds2 = −
(
1 +

a

r

)
dt2 +

(
1 +

a

r

)−1
dr2 + r2dΩ2

(2) + δABdζ
AdζB . (2)

This is only a trivial extension of the original (1+3)-dimensional Schwarzschild
solution. The second set of solutions corresponds to α/β = (n− 1)/(n+ 1)
and γ/β = −2/(n+ 1) with the spacetime metric of the form

ds2 = −
(
1 +

a

r

)−n−1
n+1

dt2 +
(
1 +

a

r

)−1
dr2 + r2dΩ2

(2)

+
(
1 +

a

r

) 2
n+1

δABdζ
AdζB . (3)

This is a nontrivial extension of the Schwarzschild solution, and its properties
are considerably different from the trivial one.

The metric (3) can also be written in the generalized Weyl form [5]

ds2 = −e2Adt2 + e2Bdφ2 + e2CδABdζ
AdζB + e2D

(
dρ2 + dz2

)
, (4)

where functions A, B, C, and D depend on ρ and z, and they are solutions
of Laplace’s equation in cylindrical coordinates (ρ, φ, z) sourced by infinitely
thin rod segments. By choosing

A =
1

2

1− n

1 + n
ln

L+ a

L− a
, B = ln ρ− 1

2
ln

L+ a

L− a
,

C =
1

1 + n
ln

L+ a

L− a
, D =

1

2
ln

(L− a)2

4R+R−
, (5)

where L = R+ + R−, R± =
√

(z ± a/2)2 + ρ2, and by performing the co-
ordinate transformation z = r(1 + a/(2r)) cosϑ, ρ = r

√
1 + a/r sinϑ, we

obtain the metric (3).
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3. Physical properties

Two classes of solutions, (2) and (3), differ from each other in terms of
their physical properties. We assume that extra dimensions are compactified
into a microscopic flat n-torus with S1×. . .×S1 topology, so that the studied
spacetimes are applicable to our (1 + 3)-dimensional Universe. Macroscopic
objects can then move only in three space dimensions.

Singularities can be found by calculating the Kretschmann scalar defined
as K = RµνρσR

µνρσ. For the trivial extension (2), we have K = 12ar−6,
and therefore, there is a physical singularity only at the center. On the
other hand, for the nontrivial extension (3), the Kretschmann scalar is more
complicated,

K =
12a2

r6

[
1− 1

3

n(n− 1)

(n+ 1)3

(
1 +

r

a

)−2
(
3

4
n+ 1 + (n+ 1)

r

a

)]
. (6)

This indicates a physical horizon not only at the center but also a shell
singularity on the horizon, r = −a, in the case with negative a and n > 1.
Solutions of this type are called Kaluza–Klein bubbles, first found in [6].

Another important difference follows from fixing the constant a by tak-
ing the Newtonian limit. A small test object moving very slowly in (1 + 3)
dimensions behaves as a test particle in a Newtonian gravitational field gen-
erated by a point mass M . In the case with the trivial extension (2), the
relation between a and M is a = −2GM , where G is the Newtonian grav-
itational constant, the same as for the original Schwarzschild solution. In
the nontrivial case (3), it is a = 2GM(n + 1)/(n − 1), which implies posi-
tive a for positive M , if n > 1, and absence of horizon, i.e., we have naked
singularities. For n = 1, the value of a cannot be fixed, and M = 0.

Finally, we can evaluate a conserved quantity associated with the found
spacetimes. The conserved energy E can be defined through the Landau–
Lifshitz stress-energy pseudotensor [7] as

E =

∮
∂Ω

h00µdSµ , hµνλ =
1

16πκ

[
(−g)

(
gµνgλσ − gµλgνσ

)]
,σ

. (7)

By choosing the (2+n)-dimensional boundary ∂Ω to correspond to a sphere
in three dimensions, using an isotropic radial coordinate R defined by the
transformation r = (1−a(4R))2R, R ∈ [1/4,∞), for a < 0 covering only the
region above the horizon, and taking the limit of the radius of the sphere
going to infinity, we find E = M in the trivial case (2), while in the nontrivial
case (3), we have E = −M/(n − 1). Therefore, for the nontrivial extension
and n > 1, the conserved energy defined through the Landau–Lifshitz stress-
energy pseudotensor has the opposite sign as the mass obtained from the
Newtonian limit.
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4. Discussion

We have studied properties of higher-dimensional extensions of the origi-
nal Schwarzschild spacetime with an arbitrary number of extra dimensions n.
There are two classes of such spacetimes, (2) and (3).

For the nontrivial extension of the Schwarzschild solution (3) with the
number of extra dimensions n > 1, we have a repulsive gravitational force
in the Newtonian limit, M < 0, with positive conserved mass E . If our
Universe contained objects with such properties, they would contribute to
overall energy density while not participating in the formation of the nonho-
mogeneous cosmic structure. Then they could explain not all, but at least
a part of the dark matter. Unfortunately, their peculiar properties suggest
nonphysicality and potential problems with stability.

However, the fundamental structure of the spacetime may allow for the
existence of microscopic and short-lived regions within so-called quantum
foam with exotic properties corresponding to the nontrivial extension of the
Schwarzschild spacetime (3). This may have implications for the dark energy
problem in cosmology. We are leaving this open question for future work.
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