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We studied the Euler–Poisson equation system in the case of cylindrical
symmetry with the von Neumann–Sedov–Taylor-type of self-similar ansatz
and present scaling solutions. We have analysed the scenario governed
by Chaplygin’s equation of state, which has historically been studied as a
unifying framework of dark fluid for dark matter and dark energy.
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1. Introduction

The evolution of a blast wave generated by a powerful explosion has
been a subject of great interest since its initial study during the 1940s and
1950s. The sudden release of a large amount of energy in a confined region
creates a discontinuity surface, across which physical quantities such as den-
sity, velocity, and possibly temperature exhibit abrupt changes [1, 2]. This
discontinuity surface, known as the shock front, has been extensively studied
over the past few decades. A fundamental ansatz to this problem was first
introduced by von Neumann [3], Sedov [4], and Taylor [5], leading to what
is now known as the von Neumann–Sedov–Taylor solution. These solutions
exhibit self-similar behaviour at intermediate timescales, where the system’s
evolution is governed by scaling laws that bridge initial transients and final
equilibrium states through dynamically emerging similarity variables [6].

In our analysis, we studied the Euler–Poisson equation system, a funda-
mental tool in astrophysics governing the dynamics of self-gravitating fluids.
Historically, it has crucial applications in star formation [7], gravitational
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collapse, cosmological structure formation [8], and heavy nuclear synthesis.
The von Neumann–Sedov–Taylor blast wave models inspired us to construct
a non-relativistic dark fluid model, which might provide a new view on the
evolution of the Universe [9].

2. Euler–Poisson equation system

Since rotation breaks the spherical symmetry, axial solutions also have
strong relevance. Here, we extend our previous analyses of spherical flows
to the Euler–Poisson equation in a cylindrical system [10, 11]

∂tρ+ (∂rρ)u+ (∂ru)ρ+
uρ

r
= 0 , (1)

∂tu+ (u∂r)u = −1

ρ
∂rP − ∂rΦ , (2)

1

r

d

dr
(r∂rΦ) = 4πρ . (3)

We solved the equations by using the Neumann–Sedov–Taylor ansatz in
geometrical units for the velocity field u = u(r, t), the density ρ = ρ(r, t),
the pressure P , and the gravitational potential density field Φ = Φ(r, t),

u(r, t) = t−αf(η) , ρ(r, t) = t−γg(η) , and Φ(r, t) = t−δh(η) ,
(4)

where f(η), g(η), and h(η) are the shape functions of the reduced ordi-
nary differential equation system with the reduced variable of η = r/tβ .
We have examined the scenario described by Chaplygin’s equation of state,
P (ρ) = −Aρ−n with A ∈ R+ and −1 < n ≤ 1, describing both dark matter
and dark energy as a unified dark fluid [12, 13]. The Chaplygin gas has
historically been explored as a unifying framework for dark matter and en-
ergy, offering a smooth transition from a pressureless dust-like regime to an
accelerating cosmological phase [14]. Its generalisations have been employed
in studies of structure formation and modifications of the cosmic expansion
history, particularly in alternative gravity and brane-world scenarios [15].
By substituting Eqs. (4) into the Euler–Poisson equation system (1)–(3),
a coupled differential equation is obtained along with an underdetermined
algebraic equation, which constrains the similarity exponents. Table 1 shows
the obtained numerical values of the similarity exponents (α, β, γ, δ) ex-
pressed in terms of the n Chaplygin exponent. At the next derivation stage,
the induced partial differential equation (PDEs) system is transformed into
a system of ordinary differential equations (ODEs) that depends solely on
the independent variable η. A comprehensive examination of the n = −1
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case can be found in our previous work [11]

f ′(η)g(η) + f(η)g′(η) +
f(η)g(η)

η
= γg(η) + βηg′(η) , (5)

−αf(η)− βηf ′(η)− η2f ′(η) + ηf ′(η)f(η) = −nAg−(n+2)(η)g′(η)− ηh′(η) ,

(6)
h′(η) + h′′(η)η = 4πη g(η) . (7)

Physically relevant time-decaying solutions should have small non-negative
α, γ, δ exponents. In addition, the β exponent characterises the spreading of
the solution functions in time. Regular diffusion or incompressible Navier–
Stokes equations have exponents with a numerical value of 1/2. The larger
the ‘absolute values of the exponents, the more radical the temporal change
of the dynamic variables’.

Table 1. Similarity exponents are expressed as a function of n. The analysis follows
the methodology outlined in Ref. [11].

Solution Shape-functions
variant α β γ δ

(i) 1/2 1/2 −1/(n+ 1) 1
(ii) 1 0 −1 2
(iii) 0 1 0 0

A systematic approach involves numerically solving the obtained sys-
tem of ordinary differential Eqs. (5)–(7) for a wide range of parameter sets
informed by physical considerations. Figure 1 illustrates the three related
shape functions f(η), g(η), and h(η), respectively, for each Chaplygin EoS
variant. Our analysis revealed that only variant (iii) exhibits an expansion
behaviour analogous to our previously explored linear EoS dark fluid model.
The others lead to a Newtonian core-collapse scenario, as indicated by the
velocity shape function f(η) becoming negative. In the scenario of variant
(iii), one can see that the density exhibits a constant behaviour, whereas
the velocity diminishes to zero in the asymptotic limit of large time. Among
the investigated scenarios, only this one aligns with the properties of the
present-day Friedmannian universe.
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Fig. 1. The shape-functions (for EoS variants (i)–(iii) from left to right and top
to bottom, respectively, and for n = 1) as solutions of the reduced Euler–Poisson
equation expressed as functions of the similarity variable η.

3. Summary

In this manuscript, we analysed the cylindrical Euler–Poisson hydrody-
namical equation system closed with the Chaplygin gas equation of state
with the time-dependent self-similar ansatz. The reduced ODE system was
integrated numerically. The obtained fluid velocity, density, and gravita-
tional field distributions were analysed for the various Chaplygin EoS vari-
ants. Our analysis found that only variant (iii) exhibits expansion behaviour
similar to the linear EoS dark fluid model, with constant density and van-
ishing velocity at late times, making it the sole scenario consistent with the
present-day Friedmannian universe.
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