
Vol. 2 (2009) Acta Physica Polonica B Proceedings Supplement No 2

RESUMMATION IN FRACTIONAL APT: HOW MANY
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Alexander P. Bakulev

Bogoliubov Laboratory of Theoretical Physics, JINR
Dubna 141980, Russia

bakulev@theor.jinr.ru

(Received October 2, 2009)

We give a short introduction to the Analytic PerturbationTheory (APT)
[D.V. Shirkov, I.L. Solovtsov, JINR Rapid Commun. 2, 5 (1996); Phys.
Rev. Lett. 79, 1209 (1997); Theor. Math. Phys. 150, 132 (2007)] and its
generalization to fractional powers — FAPT [A.P. Bakulev, S.V. Mikhailov,
N.G. Stefanis, Phys. Rev. D72, 074014 (2005), 119908(E); 75, 056005
(2007); 77, 079901(E) (2008) and A.P. Bakulev, A.I. Karanikas, N.G. Ste-
fanis, Phys. Rev. D72, 074015 (2005)]. We describe how to treat heavy-
quark thresholds in FAPT and then show how to resume perturbative series
in both the one-loop APT and FAPT. As an application we consider FAPT
description of the Higgs boson decay H0 → bb̄.

PACS numbers: 12.38.Cy, 11.15.Bt, 11.10.Hi, 12.38.Bx

1. APT and FAPT in QCD

In the standard QCD Perturbation Theory (PT) we know the Renor-
malization Group (RG) equation das[L]/dL = −a2

s − . . . for the effective
coupling αs(Q2) = as[L]/βf with L = ln(Q2/Λ2), βf = b0(Nf )/(4π) =
(11 − 2Nf/3)/(4π)1. Then the one-loop solution generates Landau pole
singularity, as[L] = 1/L.

In the Analytic Perturbation Theory we have different effective couplings
in Minkowskian (Radyushkin [4], and Krasnikov, Pivovarov [5]) and Eu-
clidean (Shirkov, Solovtsov [1]) regions. In Euclidean domain, −q2 = Q2,
L = lnQ2/Λ2, APT generates the following set of images for the effective
coupling and its n-th powers, {An[L]}n∈N, whereas in Minkowskian domain,
q2 = s, Ls = ln s/Λ2, it generates another set, {An[Ls]}n∈N. APT is based

∗ Presented at the International Meeting “Excited QCD”, Zakopane, Poland, February
8–14, 2009.

1 We use notations f(Q2) and f [L] in order to specify the arguments we mean —
squared momentum Q2 or its logarithm L = ln(Q2/Λ2), that is f [L] = f(Λ2 eL) and
Λ2 is usually referred to Nf = 3 region.
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on the RG and causality that guaranties standard perturbative UV asymp-
totics and spectral properties. Power series

∑
m dma

m
s [L] transforms into

non-power series
∑

m dmAm[L] in APT.
By the analytization in APT for an observable f(Q2) we mean the

“Källen–Lehman” representation

[
f(Q2)

]
an

=

∞∫
0

ρf (σ)
σ +Q2 − iε dσ , with ρf (σ) =

1
π

Im [f(−σ)] . (1)

Then in the one-loop approximation for the running coupling its spectral
density is ρ1(σ) = 1/

√
L2
σ + π2 and

A1[L] =

∞∫
0

ρ1(σ)
σ +Q2

dσ =
1
L
− 1
eL − 1

, (2a)

A1[Ls] =

∞∫
s

ρ1(σ)
σ

dσ =
1
π

arccos
Ls√

π2 + L2
s

, (2b)

whereas analytic images of the higher powers (n ≥ 2, n ∈ N) are:(An[L]
An[Ls]

)
=

1
(n− 1)!

(
− d

dL

)n−1(A1[L]
A1[Ls]

)
. (3)

In the standard QCD PT we have also:

(i) the factorization procedure in QCD that gives rise to the appearance
of logarithmic factors of the type: aνs [L]L 2;

(ii) the RG evolution that generates evolution factors of the type: B(Q2) =[
Z(Q2)/Z(µ2)

]
B(µ2), which reduce in the one-loop approximation to

Z(Q2) ∼ aνs [L] with ν = γ0/(2b0) being a fractional number.

All this means we need to construct analytic images of new functions:
aνs , a

ν
s L

m, . . . .
In the one-loop approximation using recursive relation (3) we can obtain

explicit expressions for Aν [L] and Aν [L]:

Aν [L]=
1
Lν
− F (e−L, 1−ν)

Γ (ν)
; Aν [L]=

sin
[
(ν−1) arccos

(
L√

π2+L2

)]
π(ν − 1) (π2 + L2)(ν−1)/2

. (4)

2 First indication that a special “analytization” procedure is needed to handle these
logarithmic terms appeared in [6].
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Here F (z, ν) is the reduced Lerch transcendental function, which is an ana-
lytic function in ν. They have very interesting properties, which we discussed
extensively in our previous papers [2, 7].

Construction of FAPT with fixed number of quark flavors, Nf , is a two-
step procedure: we start with the perturbative result

[
as(Q2)

]ν , generate
the spectral density ρν(σ) using Eq. (1), and then obtain analytic couplings
Aν [L] and Aν [L] via Eqs. (2). Here Nf is fixed and factorized out. We can
proceed in the same manner for Nf -dependent quantities:

[
αs(Q

2;Nf )
]ν ⇒

ρ̄ν(σ;Nf ) = ρ̄ν [Lσ;Nf ] ≡ ρν(σ)/βνf ⇒ Āν [L;Nf ] and Āν [L;Nf ] — here Nf

is fixed, but not factorized out3.
Global version of FAPT, which takes into account heavy-quark thresh-

olds, is constructed along the same lines but starting from global perturba-
tive coupling [α glob

s (Q2)]ν , being a continuous function of Q2 due to choosing
different values of QCD scales Λf , corresponding to different values of Nf .
We illustrate here the case of only one heavy-quark threshold at s = m2

4,
corresponding to the transition Nf = 3 → Nf = 4. Then we obtain the
discontinuous spectral density

ρglob
n (σ) = θ (Lσ < L4) ρ̄n [Lσ; 3] + θ (L4 ≤ Lσ) ρ̄n [Lσ + λ4; 4] , (5)

with Lσ ≡ ln
(
σ/Λ2

3

)
, Lf ≡ ln

(
m2
f/Λ

2
3

)
and λf ≡ ln

(
Λ2

3/Λ
2
f

)
for f = 4,

which is expressed in terms of fixed-flavor spectral densities with 3 and 4
flavors, ρ̄n[L; 3] and ρ̄n[L + λ4; 4]. However, it generates the continuous
Minkowskian coupling

Aglob
ν [Ls] = θ (Ls<L4)

(
Āν [Ls; 3]− Āν [L4; 3] + Āν [L4 + λ4; 4]

)
+ θ (L4≤Ls) Āν [Ls + λ4; 4] , (6)

and the analytic Euclidean coupling Aglob
ν [L] (for more detail see in [7]).

2. Resummation in the one-loop APT and FAPT

We consider now the perturbative expansion of a typical physical quan-
tity, like the Adler function and the ratio R, in the one-loop APT. Due to the
limited space of our presentation we provide all formulas only for quantities
in Minkowski region:

R[L] = d0 +
∞∑
n=1

dn An[L] . (7)

3 Remind here that βf = b0(Nf )/(4π).
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We suggest that there exists the generating function P (t) for coefficients
d̃n = dn/d1:

d̃n =

∞∫
0

P (t) tn−1dt with

∞∫
0

P (t) dt = 1 . (8)

To shorten our formulae, we use for the integral
∫∞
0 f(t)P (t)dt the following

notation: 〈〈f(t)〉〉P (t). Then coefficients dn = d1 〈〈tn−1〉〉P (t) and as has been
shown in [8] we have the exact result for the sum in (7)

R[L] = d0 + d1 〈〈A1[L− t]〉〉P (t) . (9)

The integral in variable t here has a rigorous meaning, ensured by the finite-
ness of the coupling A1[t] ≤ 1 and fast fall-off of the generating functionP (t).

In our previous publications [7, 9] we have constructed generalizations
of these results, first, to the case of the global APT, when heavy-quark
thresholds are taken into account. Then one starts with the series of the type
(7), where An[L] are substituted by their global analogs A

glob
n [L] (note that

due to different normalizations of global couplings, A
glob
n [L] ' An[L]/βf , the

coefficients dn should be also changed). Then

Rglob[L] = d0 + d1

〈〈
θ(L<L4)

[
∆4Ā1[t] + Ā1

[
L− t

β3
; 3
]]〉〉

P (t)

+ d1

〈〈
θ(L≥L4)Ā1

[
L+λ4 − t

β4
; 4
]〉〉

P (t)
, (10)

where ∆4Āν [t] ≡ Āν

[
L4 + λ4 − t/β4; 4

]
− Āν

[
L3 − t/β3; 3

]
.

The second generalization has been obtained for the case of the global
FAPT. Then the starting point is the series of the type

∑∞
n=0 dn A

glob
n+ν [L] and

the result of summation is a complete analog of Eq. (10) with substitutions

P (t)⇒ Pν(t) =

1∫
0

P

(
t

1− x
)
ν xν−1dx

1− x , (11)

d0 ⇒ d0 Āν [L], Ā1[L − t] ⇒ Ā1+ν [L − t], and ∆4Ā1[t] ⇒ ∆4Ā1+ν [t]. All
needed formulas have been also obtained in parallel for the Euclidean case.

3. Applications to Higgs boson decay

Here we analyze the Higgs boson decay to a b̄b pair. For its width we have

Γ (H → bb̄) =
GF

4
√

2π
MH R̃S(M2

H)

with R̃S(M2
H) ≡ m2

b(M
2
H)RS(M2

H) (12)
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and RS(s) is the R-ratio for the scalar correlator, see for details in [2, 10].
In the one-loop FAPT this generates the following non-power expansion4:

R̃S[L] = 3 m̂2
(1)

{
Aglob
ν0 [L] + dS

1

∑
n≥1

d̃S
n

πn
A

glob
n+ν0 [L]

}
, (13)

where m̂2
(1) = 8.45 GeV2 is the RG-invariant of the one-loop m2

b(µ
2) evolu-

tionm2
b(Q

2) = m̂2
(1) α

ν0
s (Q2) with ν0 = 2γ0/b0(5) = 1.04 and γ0 is the quark-

mass anomalous dimension (for a discussion see in [11]). We take for the gen-
erating function P (t) the Lipatov-like model of [9] with {c =2.4, β=−0.52}

d̃S
n = cn−1Γ (n+ 1) + β Γ (n)

1 + β
, PS(t) =

(t/c) + β

c (1 + β)
e−t/c . (14)

It gives a very good prediction for d̃S
n with n = 2, 3, 4, calculated in the

QCD PT [10]: 7.50, 61.1, and 625 in comparison with 7.42, 62.3, and 620.
Then we apply FAPT resummation technique to estimate how good is FAPT
in approximating the whole sum R̃S[L] in the range L ∈ [11.5, 13.7] which
corresponds to the range MH ∈ [60, 180] GeV2 with ΛNf=3

QCD = 189 MeV and
A

glob
1 (m2

Z) = 0.122. In this range we have (L6 = ln(m2
t /Λ

2
3))

R̃S[L]
3 m̂2

(1)

= Aglob
ν0 [L] +

dS
1

π

〈〈
Ā1+ν0

[
L+λ5− t

πβ5
; 5
]
+∆6Ā1+ν0

[
t

π

]〉〉
PS
ν0

(15)

with P S
ν0(t) defined via Eqs. (14) and (11). Now we analyze the accuracy of

the truncated FAPT expressions

R̃S[L;N ] = 3 m̂2
(1)

[
Aglob
ν0 [L] + d S

1

N∑
n=1

d̃ S
n

πn
A

glob
n+ν0 [L]

]
(16)

and compare them with the total sum R̃S[L] in Eq. (15) using relative errors
∆S
N [L] = 1−R̃S[L;N ]/R̃S[L]. In the left panel of Fig. 1 we show these errors

for N = 2, N = 3, and N = 4 in the analyzed range of L ∈ [11, 13.8]. We see
that already R̃S[L; 2] gives accuracy of the order of 2.5%, whereas R̃S[L; 3]
of the order of 1%. That means that there is no need to calculate further
corrections: at the level of accuracy of 1% it is quite enough to take into
account only coefficients up to d3. This conclusion is stable with respect to
the variation of parameters of the model PS(t).

4 Appearance of denominators πn in association with the coefficients d̃n is due to dn
normalization.
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Fig. 1. Left: The relative errors ∆S
N [L], N = 2, 3 and 4, of the truncated FAPT in

comparison with the exact summation result, Eq. (15). Right: The width Γ∞
H→bb̄

as a function of the Higgs boson mass MH in the resummed FAPT (solid line).

4. Conclusions

In this report we described the resummation approach in the global ver-
sions of the one-loop APT and FAPT and argued that it produces finite
answers, provided the generating function P (t) of perturbative coefficients
dn is known. The main conclusion is: To achieve an accuracy of the order
of 1% we do not need to calculate more than four loops and d4 coefficients
are needed only to estimate corresponding generating functions P (t).

This work was supported in part by the Russian Foundation for Fun-
damental Research, grants No. 07-02-91557 and 08-01-00686, the BRFBR–
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