RESUMMATION IN FRACTIONAL APT: HOW MANY LOOPS DO WE NEED TO TAKE INTO ACCOUNT?*

Alexander P. Bakulev
Bogoliubov Laboratory of Theoretical Physics, JINR
Dubna 141980, Russia
bakulev@theor.jinr.ru
(Received October 2, 2009)

We give a short introduction to the Analytic Perturbation Theory (APT) [D.V. Shirkov, I.L. Solovtsov, JINR Rapid Commun. 2, 5 (1996); Phys. Rev. Lett. 79, 1209 (1997); Theor. Math. Phys. 150, 132 (2007)] and its generalization to fractional powers - FAPT [A.P. Bakulev, S.V. Mikhailov, N.G. Stefanis, Phys. Rev. D72, 074014 (2005), 119908(E); 75, 056005 (2007); 77, 079901(E) (2008) and A.P. Bakulev, A.I. Karanikas, N.G. Stefanis, Phys. Rev. D72, 074015 (2005)]. We describe how to treat heavyquark thresholds in FAPT and then show how to resume perturbative series in both the one-loop APT and FAPT. As an application we consider FAPT description of the Higgs boson decay $H^{0} \rightarrow b \bar{b}$.

PACS numbers: 12.38.Cy, 11.15.Bt, 11.10.Hi, 12.38.Bx

1. APT and FAPT in QCD

In the standard QCD Perturbation Theory (PT) we know the Renormalization Group (RG) equation $d a_{\mathrm{s}}[L] / d L=-a_{\mathrm{s}}^{2}-\ldots$ for the effective coupling $\alpha_{\mathrm{s}}\left(Q^{2}\right)=a_{\mathrm{s}}[L] / \beta_{f}$ with $L=\ln \left(Q^{2} / \Lambda^{2}\right), \beta_{f}=b_{0}\left(N_{f}\right) /(4 \pi)=$ $\left(11-2 N_{f} / 3\right) /(4 \pi)^{1}$. Then the one-loop solution generates Landau pole singularity, $a_{\mathrm{s}}[L]=1 / L$.

In the Analytic Perturbation Theory we have different effective couplings in Minkowskian (Radyushkin [4], and Krasnikov, Pivovarov [5]) and Euclidean (Shirkov, Solovtsov [1]) regions. In Euclidean domain, $-q^{2}=Q^{2}$, $L=\ln Q^{2} / \Lambda^{2}$, APT generates the following set of images for the effective coupling and its n-th powers, $\left\{\mathcal{A}_{n}[L]\right\}_{n \in \mathbb{N}}$, whereas in Minkowskian domain, $q^{2}=s, L_{\mathrm{s}}=\ln s / \Lambda^{2}$, it generates another set, $\left\{\mathfrak{A}_{n}\left[L_{\mathrm{s}}\right]\right\}_{n \in \mathbb{N}}$. APT is based

[^0]on the RG and causality that guaranties standard perturbative UV asymptotics and spectral properties. Power series $\sum_{m} d_{m} a_{\mathrm{s}}^{m}[L]$ transforms into non-power series $\sum_{m} d_{m} \mathcal{A}_{m}[L]$ in APT.

By the analytization in APT for an observable $f\left(Q^{2}\right)$ we mean the "Källen-Lehman" representation

$$
\begin{equation*}
\left[f\left(Q^{2}\right)\right]_{\mathrm{an}}=\int_{0}^{\infty} \frac{\rho_{f}(\sigma)}{\sigma+Q^{2}-i \epsilon} d \sigma, \quad \text { with } \quad \rho_{f}(\sigma)=\frac{1}{\pi} \operatorname{Im}[f(-\sigma)] . \tag{1}
\end{equation*}
$$

Then in the one-loop approximation for the running coupling its spectral density is $\rho_{1}(\sigma)=1 / \sqrt{L_{\sigma}^{2}+\pi^{2}}$ and

$$
\begin{align*}
\mathcal{A}_{1}[L] & =\int_{0}^{\infty} \frac{\rho_{1}(\sigma)}{\sigma+Q^{2}} d \sigma=\frac{1}{L}-\frac{1}{e^{L}-1} \tag{2a}\\
\mathfrak{A}_{1}\left[L_{\mathrm{s}}\right] & =\int_{\mathrm{s}}^{\infty} \frac{\rho_{1}(\sigma)}{\sigma} d \sigma=\frac{1}{\pi} \arccos \frac{L_{\mathrm{s}}}{\sqrt{\pi^{2}+L_{\mathrm{s}}^{2}}} \tag{2b}
\end{align*}
$$

whereas analytic images of the higher powers $(n \geq 2, n \in \mathbb{N})$ are:

$$
\begin{equation*}
\binom{\mathcal{A}_{n}[L]}{\mathfrak{A}_{n}\left[L_{\mathrm{s}}\right]}=\frac{1}{(n-1)!}\left(-\frac{d}{d L}\right)^{n-1}\binom{\mathcal{A}_{1}[L]}{\mathfrak{A}_{1}\left[L_{\mathrm{s}}\right]} . \tag{3}
\end{equation*}
$$

In the standard QCD PT we have also:
(i) the factorization procedure in QCD that gives rise to the appearance of logarithmic factors of the type: $a_{\mathrm{s}}^{\nu}[L] L^{2}$;
(ii) the RG evolution that generates evolution factors of the type: $B\left(Q^{2}\right)=$ $\left[Z\left(Q^{2}\right) / Z\left(\mu^{2}\right)\right] B\left(\mu^{2}\right)$, which reduce in the one-loop approximation to $Z\left(Q^{2}\right) \sim a_{\mathrm{s}}^{\nu}[L]$ with $\nu=\gamma_{0} /\left(2 b_{0}\right)$ being a fractional number.

All this means we need to construct analytic images of new functions: $a_{\mathrm{s}}^{\nu}, a_{\mathrm{s}}^{\nu} L^{m}, \ldots$.

In the one-loop approximation using recursive relation (3) we can obtain explicit expressions for $\mathcal{A}_{\nu}[L]$ and $\mathfrak{A}_{\nu}[L]$:

$$
\begin{equation*}
\mathcal{A}_{\nu}[L]=\frac{1}{L^{\nu}}-\frac{F\left(e^{-L}, 1-\nu\right)}{\Gamma(\nu)} ; \quad \mathfrak{A}_{\nu}[L]=\frac{\sin \left[(\nu-1) \arccos \left(\frac{L}{\sqrt{\pi^{2}+L^{2}}}\right)\right]}{\pi(\nu-1)\left(\pi^{2}+L^{2}\right)^{(\nu-1) / 2}} \tag{4}
\end{equation*}
$$

[^1]Here $F(z, \nu)$ is the reduced Lerch transcendental function, which is an analytic function in ν. They have very interesting properties, which we discussed extensively in our previous papers [2, 7].

Construction of FAPT with fixed number of quark flavors, N_{f}, is a twostep procedure: we start with the perturbative result $\left[a_{\mathrm{s}}\left(Q^{2}\right)\right]^{\nu}$, generate the spectral density $\rho_{\nu}(\sigma)$ using Eq. (1), and then obtain analytic couplings $\mathcal{A}_{\nu}[L]$ and $\mathfrak{A}_{\nu}[L]$ via Eqs. (2). Here N_{f} is fixed and factorized out. We can proceed in the same manner for N_{f}-dependent quantities: $\left[\alpha_{\mathrm{s}}\left(Q^{2} ; N_{f}\right)\right]^{\nu} \Rightarrow$ $\bar{\rho}_{\nu}\left(\sigma ; N_{f}\right)=\bar{\rho}_{\nu}\left[L_{\sigma} ; N_{f}\right] \equiv \rho_{\nu}(\sigma) / \beta_{f}^{\nu} \Rightarrow \overline{\mathcal{A}}_{\nu}\left[L ; N_{f}\right]$ and $\overline{\mathfrak{A}}_{\nu}\left[L ; N_{f}\right]$ - here N_{f} is fixed, but not factorized out ${ }^{3}$.

Global version of FAPT, which takes into account heavy-quark thresholds, is constructed along the same lines but starting from global perturbative coupling $\left[\alpha_{\mathrm{s}}^{\text {glob }}\left(Q^{2}\right)\right]^{\nu}$, being a continuous function of Q^{2} due to choosing different values of QCD scales Λ_{f}, corresponding to different values of N_{f}. We illustrate here the case of only one heavy-quark threshold at $s=m_{4}^{2}$, corresponding to the transition $N_{f}=3 \rightarrow N_{f}=4$. Then we obtain the discontinuous spectral density

$$
\begin{equation*}
\rho_{n}^{\text {glob }}(\sigma)=\theta\left(L_{\sigma}<L_{4}\right) \bar{\rho}_{n}\left[L_{\sigma} ; 3\right]+\theta\left(L_{4} \leq L_{\sigma}\right) \bar{\rho}_{n}\left[L_{\sigma}+\lambda_{4} ; 4\right] \tag{5}
\end{equation*}
$$

with $L_{\sigma} \equiv \ln \left(\sigma / \Lambda_{3}^{2}\right), L_{f} \equiv \ln \left(m_{f}^{2} / \Lambda_{3}^{2}\right)$ and $\lambda_{f} \equiv \ln \left(\Lambda_{3}^{2} / \Lambda_{f}^{2}\right)$ for $f=4$, which is expressed in terms of fixed-flavor spectral densities with 3 and 4 flavors, $\bar{\rho}_{n}[L ; 3]$ and $\bar{\rho}_{n}\left[L+\lambda_{4} ; 4\right]$. However, it generates the continuous Minkowskian coupling

$$
\begin{align*}
\mathfrak{A}_{\nu}^{\text {glob }}\left[L_{\mathrm{s}}\right]= & \theta\left(L_{\mathrm{s}}<L_{4}\right)\left(\overline{\mathfrak{A}}_{\nu}\left[L_{\mathrm{s}} ; 3\right]-\overline{\mathfrak{A}}_{\nu}\left[L_{4} ; 3\right]+\overline{\mathfrak{A}}_{\nu}\left[L_{4}+\lambda_{4} ; 4\right]\right) \\
& +\theta\left(L_{4} \leq L_{\mathrm{s}}\right) \overline{\mathfrak{A}}_{\nu}\left[L_{\mathrm{s}}+\lambda_{4} ; 4\right], \tag{6}
\end{align*}
$$

and the analytic Euclidean coupling $\mathcal{A}_{\nu}^{\text {glob }}[L]$ (for more detail see in [7]).

2. Resummation in the one-loop APT and FAPT

We consider now the perturbative expansion of a typical physical quantity, like the Adler function and the ratio R, in the one-loop APT. Due to the limited space of our presentation we provide all formulas only for quantities in Minkowski region:

$$
\begin{equation*}
\mathcal{R}[L]=d_{0}+\sum_{n=1}^{\infty} d_{n} \mathfrak{A}_{n}[L] . \tag{7}
\end{equation*}
$$

[^2]We suggest that there exists the generating function $P(t)$ for coefficients $\tilde{d}_{n}=d_{n} / d_{1}:$

$$
\begin{equation*}
\tilde{d}_{n}=\int_{0}^{\infty} P(t) t^{n-1} d t \quad \text { with } \quad \int_{0}^{\infty} P(t) d t=1 \tag{8}
\end{equation*}
$$

To shorten our formulae, we use for the integral $\int_{0}^{\infty} f(t) P(t) d t$ the following notation: $\langle\langle f(t)\rangle\rangle_{P(t)}$. Then coefficients $d_{n}=d_{1}\left\langle\left\langle t^{n-1}\right\rangle\right\rangle_{P(t)}$ and as has been shown in [8] we have the exact result for the sum in (7)

$$
\begin{equation*}
\mathcal{R}[L]=d_{0}+d_{1}\left\langle\left\langle\mathfrak{A}_{1}[L-t]\right\rangle\right\rangle_{P(t)} \tag{9}
\end{equation*}
$$

The integral in variable t here has a rigorous meaning, ensured by the finiteness of the coupling $\mathfrak{A}_{1}[t] \leq 1$ and fast fall-off of the generating function $P(t)$.

In our previous publications $[7,9]$ we have constructed generalizations of these results, first, to the case of the global APT, when heavy-quark thresholds are taken into account. Then one starts with the series of the type (7), where $\mathfrak{A}_{n}[L]$ are substituted by their global analogs $\mathfrak{A}_{n}^{\text {glob }}[L]$ (note that due to different normalizations of global couplings, $\mathfrak{A}_{n}^{\text {glob }}[L] \simeq \mathfrak{A}_{n}[L] / \beta_{f}$, the coefficients d_{n} should be also changed). Then

$$
\begin{align*}
\mathcal{R}^{\text {glob }}[L]= & d_{0}+d_{1}\left\langle\left\langle\theta\left(L<L_{4}\right)\left[\Delta_{4} \overline{\mathfrak{A}}_{1}[t]+\overline{\mathfrak{A}}_{1}\left[L-\frac{t}{\beta_{3}} ; 3\right]\right]\right\rangle\right\rangle_{P(t)} \\
& +d_{1}\left\langle\left\langle\theta\left(L \geq L_{4}\right) \overline{\mathfrak{A}}_{1}\left[L+\lambda_{4}-\frac{t}{\beta_{4}} ; 4\right]\right\rangle\right\rangle_{P(t)}, \tag{10}
\end{align*}
$$

where $\Delta_{4} \overline{\mathfrak{A}}_{\nu}[t] \equiv \overline{\mathfrak{A}}_{\nu}\left[L_{4}+\lambda_{4}-t / \beta_{4} ; 4\right]-\overline{\mathfrak{A}}_{\nu}\left[L_{3}-t / \beta_{3} ; 3\right]$.
The second generalization has been obtained for the case of the global FAPT. Then the starting point is the series of the type $\sum_{n=0}^{\infty} d_{n} \mathfrak{A}_{n+\nu}^{\text {glob }}[L]$ and the result of summation is a complete analog of Eq. (10) with substitutions

$$
\begin{equation*}
P(t) \Rightarrow P_{\nu}(t)=\int_{0}^{1} P\left(\frac{t}{1-x}\right) \frac{\nu x^{\nu-1} d x}{1-x}, \tag{11}
\end{equation*}
$$

$d_{0} \Rightarrow d_{0} \overline{\mathfrak{A}}_{\nu}[L], \overline{\mathfrak{A}}_{1}[L-t] \Rightarrow \overline{\mathfrak{A}}_{1+\nu}[L-t]$, and $\Delta_{4} \overline{\mathfrak{A}}_{1}[t] \Rightarrow \Delta_{4} \overline{\mathfrak{A}}_{1+\nu}[t]$. All needed formulas have been also obtained in parallel for the Euclidean case.

3. Applications to Higgs boson decay

Here we analyze the Higgs boson decay to a $\bar{b} b$ pair. For its width we have

$$
\begin{align*}
\Gamma(H \rightarrow b \bar{b}) & =\frac{G_{\mathrm{F}}}{4 \sqrt{2} \pi} M_{H} \widetilde{R}_{\mathrm{S}}\left(M_{H}^{2}\right) \\
\text { with } \widetilde{R}_{\mathrm{S}}\left(M_{H}^{2}\right) & \equiv m_{b}^{2}\left(M_{H}^{2}\right) R_{\mathrm{S}}\left(M_{H}^{2}\right) \tag{12}
\end{align*}
$$

and $R_{\mathrm{S}}(s)$ is the R-ratio for the scalar correlator, see for details in $[2,10]$. In the one-loop FAPT this generates the following non-power expansion ${ }^{4}$:

$$
\begin{equation*}
\widetilde{\mathcal{R}}_{\mathrm{S}}[L]=3 \hat{m}_{(1)}^{2}\left\{\mathfrak{A}_{\nu_{0}}^{\text {glob }}[L]+d_{1}^{\mathrm{S}} \sum_{n \geq 1} \frac{\tilde{d}_{n}^{\mathrm{S}}}{\pi^{n}} \mathfrak{A}_{n+\nu_{0}}^{\text {glob }}[L]\right\}, \tag{13}
\end{equation*}
$$

where $\hat{m}_{(1)}^{2}=8.45 \mathrm{GeV}^{2}$ is the RG-invariant of the one-loop $m_{b}^{2}\left(\mu^{2}\right)$ evolution $m_{b}^{2}\left(Q^{2}\right)=\hat{m}_{(1)}^{2} \alpha_{\mathrm{s}}^{\nu_{0}}\left(Q^{2}\right)$ with $\nu_{0}=2 \gamma_{0} / b_{0}(5)=1.04$ and γ_{0} is the quarkmass anomalous dimension (for a discussion see in [11]). We take for the generating function $P(t)$ the Lipatov-like model of [9] with $\{c=2.4, \beta=-0.52\}$

$$
\begin{equation*}
\tilde{d}_{n}^{\mathrm{S}}=c^{n-1} \frac{\Gamma(n+1)+\beta \Gamma(n)}{1+\beta}, \quad P_{\mathrm{S}}(t)=\frac{(t / c)+\beta}{c(1+\beta)} e^{-t / c} . \tag{14}
\end{equation*}
$$

It gives a very good prediction for \tilde{d}_{n}^{S} with $n=2,3,4$, calculated in the QCD PT [10]: 7.50, 61.1, and 625 in comparison with $7.42,62.3$, and 620 . Then we apply FAPT resummation technique to estimate how good is FAPT in approximating the whole sum $\widetilde{\mathcal{R}}_{S}[L]$ in the range $L \in[11.5,13.7]$ which corresponds to the range $M_{H} \in[60,180] \mathrm{GeV}^{2}$ with $\Lambda_{\mathrm{QCD}}^{N_{f}=3}=189 \mathrm{MeV}$ and $\mathfrak{A}_{1}^{\text {glob }}\left(m_{Z}^{2}\right)=0.122$. In this range we have $\left(L_{6}=\ln \left(m_{t}^{2} / \Lambda_{3}^{2}\right)\right)$

$$
\begin{equation*}
\frac{\widetilde{\mathcal{R}}_{S}[L]}{3 \hat{m}_{(1)}^{2}}=\mathfrak{A}_{\nu_{0}}^{\text {glob }}[L]+\frac{d_{1}^{S}}{\pi}\left\langle\left\langle\overline{\mathfrak{A}}_{1+\nu_{0}}\left[L+\lambda_{5}-\frac{t}{\pi \beta_{5}} ; 5\right]+\Delta_{6} \overline{\mathfrak{A}}_{1+\nu_{0}}\left[\frac{t}{\pi}\right]\right\rangle\right\rangle_{P_{\nu_{0}}^{S}}(\tag{15}
\end{equation*}
$$

with $P_{\nu_{0}}^{\mathrm{S}}(t)$ defined via Eqs. (14) and (11). Now we analyze the accuracy of the truncated FAPT expressions

$$
\begin{equation*}
\widetilde{\mathcal{R}}_{\mathrm{S}}[L ; N]=3 \hat{m}_{(1)}^{2}\left[\mathfrak{A}_{\nu_{0}}^{\text {glob }}[L]+d_{1}^{\mathrm{S}} \sum_{n=1}^{N} \frac{\tilde{d}_{n}^{\mathrm{S}}}{\pi^{n}} \mathfrak{A}_{n+\nu_{0}}^{\text {glob }}[L]\right] \tag{16}
\end{equation*}
$$

and compare them with the total sum $\widetilde{\mathcal{R}}_{S}[L]$ in Eq. (15) using relative errors $\Delta_{N}^{\mathrm{S}}[L]=1-\widetilde{\mathcal{R}}_{\mathrm{S}}[L ; N] / \widetilde{\mathcal{R}}_{\mathrm{S}}[L]$. In the left panel of Fig. 1 we show these errors for $N=2, N=3$, and $N=4$ in the analyzed range of $L \in[11,13.8]$. We see that already $\widetilde{\mathcal{R}}_{S}[L ; 2]$ gives accuracy of the order of 2.5%, whereas $\widetilde{\mathcal{R}}_{S}[L ; 3]$ of the order of 1%. That means that there is no need to calculate further corrections: at the level of accuracy of 1% it is quite enough to take into account only coefficients up to d_{3}. This conclusion is stable with respect to the variation of parameters of the model $P_{\mathrm{S}}(t)$.

[^3]

Fig. 1. Left: The relative errors $\Delta_{N}^{\mathrm{S}}[L], N=2,3$ and 4 , of the truncated FAPT in comparison with the exact summation result, Eq. (15). Right: The width $\Gamma_{H \rightarrow b \bar{b}}^{\infty}$ as a function of the Higgs boson mass M_{H} in the resummed FAPT (solid line).

4. Conclusions

In this report we described the resummation approach in the global versions of the one-loop APT and FAPT and argued that it produces finite answers, provided the generating function $P(t)$ of perturbative coefficients d_{n} is known. The main conclusion is: To achieve an accuracy of the order of 1% we do not need to calculate more than four loops and d_{4} coefficients are needed only to estimate corresponding generating functions $P(t)$.

This work was supported in part by the Russian Foundation for Fundamental Research, grants No. 07-02-91557 and 08-01-00686, the BRFBRJINR Cooperation Programme, contract No. F08D-001, and the Heisenberg -Landau Programme under grant 2009.

REFERENCES

[1] D.V. Shirkov, I.L. Solovtsov, JINR Rapid Commun. 2, 5 (1996); Phys. Rev. Lett. 79, 1209 (1997); Theor. Math. Phys. 150, 132 (2007).
[2] A.P. Bakulev, S.V. Mikhailov, N.G. Stefanis, Phys. Rev. D72, 074014 (2005); 119908(E); 75, 056005 (2007); 77, 079901(E) (2008).
[3] A.P. Bakulev, A.I. Karanikas, N.G. Stefanis, Phys. Rev. D72, 074015 (2005).
[4] A.V. Radyushkin, JINR Rapid Commun. 78, 96 (1996); JINR preprint, E2-82-159, 26 Febr. 1982 [arXiv:hep-ph/9907228].
[5] N.V. Krasnikov, A.A. Pivovarov, Phys. Lett. B116, 168 (1982).
[6] A.I. Karanikas, N.G. Stefanis, Phys. Lett. B504, 225 (2001); B636, 330 (2006).
[7] A.P. Bakulev, Phys. Part. Nucl. 40, 715 (2009).
[8] S.V. Mikhailov, J. High Energy Phys. 06, 009 (2007).
[9] A.P. Bakulev, S.V. Mikhailov, in Proc. Int. Seminar on Contemp. Probl. of Part. Phys., dedicated to the memory of I.L. Solovtsov, Dubna, Jan. 17-18, 2008., Eds. A.P. Bakulev et al., JINR, Dubna 2008, pp. 119-133.
[10] P.A. Baikov, K.G. Chetyrkin, J.H. Kühn, Phys. Rev. Lett. 96, 012003 (2006).
[11] A.L. Kataev, V.T. Kim, in Proc. Int. Seminar on Contemporary Probl. of Part. Phys., dedicated to the memory of I.L. Solovtsov, Dubna Jan. 17-18, 2003, Eds. A.P. Bakulev et al. JINR, Dubna 2008, pp. 167-182.
[12] P.A. Baikov, K.G. Chetyrkin, J.H. Kuhn, Phys. Rev. Lett. 101, 012003 (2008).

[^0]: * Presented at the International Meeting "Excited QCD", Zakopane, Poland, February 8-14, 2009.
 ${ }^{1}$ We use notations $f\left(Q^{2}\right)$ and $f[L]$ in order to specify the arguments we mean squared momentum Q^{2} or its logarithm $L=\ln \left(Q^{2} / \Lambda^{2}\right)$, that is $f[L]=f\left(\Lambda^{2} e^{L}\right)$ and Λ^{2} is usually referred to $N_{f}=3$ region.

[^1]: ${ }^{2}$ First indication that a special "analytization" procedure is needed to handle these logarithmic terms appeared in [6].

[^2]: ${ }^{3}$ Remind here that $\beta_{f}=b_{0}\left(N_{f}\right) /(4 \pi)$.

[^3]: ${ }^{4}$ Appearance of denominators π^{n} in association with the coefficients \tilde{d}_{n} is due to d_{n} normalization.

