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THE PHYSICS OF GLUEBALLS∗
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I present a model for glueballs with two and three constituent gluons.
I show that, even if spin-1 gluons seem to reproduce properly the lattice
QCD spectrum for C = + states, the extension for C = − cannot match
with the lattice results. Resorting to the helicity formalism, we show how
transverse gluons fit in better agreement the lattice QCD spectrum. We
then conclude that even if gluons gain an effective mass, they remain trans-
verse particles.

PACS numbers: 12.39.Mk, 12.39.Pn

1. Introduction

Quantum Chromodynamics (QCD) allows the self-coupling of the gauge
bosons, the gluons. Therefore, states with no valence quarks, the glueballs,
are a beautiful consequence and prediction of QCD. Recently, a comprehen-
sive review was devoted to the physics of glueballs [1]. Here I present a short
summary of this review with a special emphasis on constituent models. The
interested reader will find technical details about other techniques and more
references in the review [1].

The observation of glueballs, however, remains difficult, probably be-
cause the lightest one, the scalar 0++, should mix with mesons [2]. Some
experimental glueball candidates are currently known, such as the f0(1370),
f0(1500), f0(1710), . . . but no definitive conclusions can be drawn concern-
ing the nature of these states [1–3].

On the other hand, pure gauge QCD has been investigated by lattice
QCD for many years, leading to a well established glueball spectrum below
4 GeV [4]. Our aim is to reproduce this hierarchy with the most simple mod-
els with constituent gluons. Since two gluons can only bind into positive-C,
we have to consider three-gluon glueballs to account for the existence of
low-lying negative-C states.
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I report the main results of lattice QCD and QCD spectral sum rules in,
respectively, Sections 2 and 3. Section 3 is devoted to constituent models.

2. Lattice

The pure gauge spectrum was investigated on a lattice by Morningstar
and Peardon [4]. They found 15 glueballs states with various quantum num-
bers below 4 GeV, see Fig. 1. The scalar glueball is resolved to be the lightest
glueball. It is worth also mentioning that no 1±+ state was found, at least
below 4 GeV. When including dynamical quarks in the gluonic operators one
expects a decreases of the glueball masses. However, no definitive conclusion
can be drawn [1].
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Fig. 1. Lattice spectrum.

3. QCD spectral sum rules

The QCD spectral sum rules is a powerful technique to describe hadronic
resonances. In the glueball sector, a comprehensive study of the low-lying
gluonic correlators was performed by Forkel [5]. He showed how instanton
induced forces are needed to satisfied low-energy theorems and stability un-
der the sum rules. Instanton forces are resolved to be attractive in the scalar
and repulsive in the pseudoscalar channels, leading to the following masses

mS ≈ 1.25 GeV, mP ≈ 2.2 GeV . (1)

Forkel’s spectrum is somehow lower than pure gauge lattice masses. From
which we can expect a decrease of lattice masses in the unquenched case.
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4. Constituent models

4.1. Two-gluon glueballs

In Ref. [6], the authors provide a relevant model of two-gluon glueballs.
Assuming Casimir scaling for the string tension of the flux tube, the Hamil-
tonian, endowed with One-Gluon Exchange (OGE) potentials, reads

Hgg = 2
√

p2 +m2 + 9
4σr + Voge(r;αS, µ; S,L) . (2)

Although they use a bare mass m = 0 in the kinetic term, their gluons have
longitudinal components and are spin-1 particles. Therefore, many states
are degenerate and the authors resorted to spin-dependent potentials coming
from the OGE to lift these degeneracies. The corrections are of the order
of µ−2, where µ =

〈
p2
〉
is an effective constituent mass. The parameters

were fitted on the low-lying states and the final spectrum is displayed in
Fig. 2 (left).

Fig. 2. Left: Spectrum of Hamiltonian (2.1) with longitudinal gluons. Right: Spec-
trum of Hamiltonian (3.1) with longitudinal gluons.

All states (squares) fall into lattice error bars. However, we noticed
some spurious states (circles) not found by any lattice study. For instance,
J = 1 states are forbidden by Yang’s theorem and should not be present
in the spectrum of two-gluon bound states. The appearance of such states
is induced by the longitudinal component of gluons and should disappear
when considering transverse gluons.

4.2. Three-gluon glueballs

Let us forget about the spurious states for the moment and let us gen-
eralize the model of the previous section for three-gluon glueballs. We used
a generalisation of the flux tube for the confinement. In heavy baryons, the
confinement has a Y-shape, but in our case, we replaced it by a center-of-
mass junction. The Hamiltonian is supplemented by the potential coming
from the OGE and reads:
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Hggg =
3∑
i

√
p2
i +

9
4
fσ|ri −Rcm|+

∑
i<j

Voge(rij ;αS, µ; Lij ,Sij) . (3)

We refer the reader to Ref. [7] for further details concerning the Hamilto-
nian. This semirelativistic Hamiltonian is easily diagonalized in a Gaussian
basis [8, 9].

We impose the symmetric colour function dabcA
a
µA

b
νA

c
ρ, which ensures

a negative C-parity. Then the spin symmetry determines the symmetry of
the space wave-function. Since the coupling of three spin-1 is given by

1⊗ 1⊗ 1 = 3s ⊕ 2m ⊕ 1s ⊕ 0a , (4)

the lowest state with 2−− has a mixed symmetry and cannot lie in the
same mass range as 1−− and 3−−, as it was already noticed in Ref. [10].
Moreover, a positive parity requires an odd angular momentum. Then, all
(0, 1, 2, 3)+− are degenerate with a large component L = 1 in the wave
function. But the lattice QCD exhibits a gap around 2 GeV between 0+−

and 1+− which are respectively the highest and lowest states with a negative
conjugation charge. This gap cannot be reproduced within this model and
the spectrum of the Hamiltonian (3.1), shown in Fig. 2 (right), is nearly
in complete disagreement with lattice QCD. The symmetry arguments are
Hamiltonian-independent and we can, therefore, conclude that models with
longitudinal gluons are not appropriate to reproduce the lattice pure gauge
spectrum.

4.3. Transverse gluons

In order to solve the problems encountered (spurious states, hierarchy in
the PC = +− sector), we implemented a formalism developed by Jacob and
Wick [11]. This formalism allows us to handle transverse particles. Indeed,
in the previous models, longitudinal components implied extra states. When
applying it to two-gluon glueballs, we remarked that the Bose symmetry
(and the parity) implies selection rules. Three families were identified [12]:
(2k)++, (2k + 3)++, (2k + 2)−+ with k ∈ N . One easily checks that no
spurious J = 1 states appear. Moreover, with this special construction, we
can project out the wave function on the usual spectroscopic basis. For
the low-lying states, we have the following helicity structures in term of
spectroscopic states:
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∣∣S+; 0++
〉

= |(++) + (−−)〉 =

√
2
3

∣∣1S0

〉
+

√
1
3

∣∣5D0

〉
, (5a)∣∣S−; 0−+

〉
= |(++)− (−−)〉 =

∣∣3P0

〉
, (5b)∣∣D+; 2++

〉
= |(+−) + (−+)〉 =

√
2
5

∣∣5S2

〉
+

√
4
7

∣∣5D2

〉
+

√
1
7

∣∣5G2

〉
.(5c)

With this decomposition, it is now easily to compute matrix elements. More-
over, one does not need to use complicated spin-dependent potentials (since
the orbital wave function are different).

We checked the wave functions using a simple Hamiltonian:

Hgg = 2
√

p2 +
9
4
σr − 3

αS

r
. (6)

The resulting spectrum, displayed in Fig. 3 is in good agreement with the
lattice QCD data without the inclusion of spin-dependent potentials. But
instanton-induced interactions were needed for J = 0 states. Indeed, with
this simple Hamiltonian scalar and pseudoscalar states are degenerate. But,
as shown by Forkel using QCD spectral sum rules [5], one has to add an
attractive (repulsive) force in the 0++ (0−+) glueball correlator.

Fig. 3. Spectrum of Hamiltonian (4.1) with transverse gluons.

In addition, all states are present with no spurious state. We then con-
clude that, in order to reproduce the glueball hierarchy observed in lattice
QCD, one has to enforce that the lightest states with a positive C-parity are
bound states of two transverse gluons.
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The next step is to implement this formalism for three-gluon glueballs.
This work is in progress. However, we have some indications that the lowest-
lying three-gluon glueballs with transverse gluons are spin 1 and 3 [13].
Symmetry arguments are also in favor of a four-gluon interpretation for
0+−.
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