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The static potentials for quark–antiquark–gluon and 3-gluon systems
are computed with lattice QCD methods. For the quark–antiquark–gluon
hybrid meson the static potential is obtained for different values of the
angle between the quark–gluon and antiquark–gluon segments. The sim-
ulations support the formation of an adjoint string for small angles, while
for large angles, the adjoint string is replaced by two fundamental strings
connecting the gluon and the quarks. For the 3-gluon glueball, we discuss
the corresponding Wilson loops and show that the gluons are connected by
fundamental strings when the gluons are far apart.

PACS numbers: 11.15.Ha, 12.38.Gc

1. Introduction

We explore, in lattice QCD, the static potential of three-body systems
with gluon(s) using Wilson loops, namely the quark–antiquark–gluon hybrid
and the three gluons glueball. The interest in this systems is increasing be-
cause of the future experiments BESIII at IHEP in Beijin, GLUEX at JLab
and PANDA at GSI in Darmstadt, dedicated to study the mass range of
charmonium, with a focus in its plausible excitations and in hybrid and glue-
ball production. The three-gluon glueballs are also relevant to the odderon.
Thus several models are being developed and the static potential should,
at least, provide one important component of the full interaction. The first
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8–14, 2009.
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lattice studies of the gluon interactions were performed by Michael [1, 2]
and Bali extended them to other SU(3) representations [3]. Okiharu and
colleagues [4,5] studied tetraquarks and pentaquarks on the lattice. Bicudo,
Cardoso and Oliveira studied the hybrid quark–antiquark–gluon static po-
tential, [6, 7].

We compare different models of confinement, namely the Casimir Scal-
ing, type I and type II superconducor models. In the type I model, adjoint
strings are formed while in the type II model, the fundamental strings re-
pulse and adjoint strings are not formed. This comes from the analogy with
the two types of condensed matter superconductors (see Fig. 1).

In the case of the hybrid meson type II models mean a fundamental
string linking the quark and the antiquark to the gluon, while type I models
require an adjoint string. For the three-gluon glueball, the type II means
three fundamental string linking the gluons in a triangle shape, while for
the type I the three adjoint strings fuse at a common point giving rise to
a starfish geometry (see Fig. 1).

Fig. 1. The two models of confinement: type I and type II.

2. Wilson loops

To measure the static potentials in lattice QCD, we construct an operator
— the Wilson loop — which corresponds to our system. The mean value of
this operator could be expanded in Euclidean time as

〈W (t)〉 =
∑
n

Cne
−Vnt (1)

with V0 being the static potential of the system.
For the case of a meson this operator is simply given by a closed loop of

lattice links

Wqq̄(R, T ) = Tr
[
Uµ(0, 0) . . . Uµ(R− 1, 0)U4(R, 0) . . . U4(R, T − 1)

×Uµ(R− 1, T )† . . . Uµ(0, T )†U4(0, T− 1)† . . . U4(0, 0)†
]
.(2)
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In the cases of hybrid mesons and glueballs, we have lines corresponding
not only to quarks and antiquarks, but also to gluons. Since the gluons
are in the adjoint representation of SU(3) the gluonic lines correspond to
adjoint paths in the lattice Ũab = 1

2 Tr[λaUλbU †]. This operators could be
simplified by using the Fierz relation:∑

a

λaijλ
a
kl = 2δilδjk − 2

3δijδkl . (3)

For the results in this work, we used 141 243 × 48 SU(3) lattice configu-
rations with β = 6.2, generated with MILC code [9].

2.1. Quark–antiquark–gluon Wilson loop

In the case of the quark–antiquark–gluon the Wilson loop is given by [6,7]
(Fig. 2):

Wqq̄g = Tr
[
U4(x, 0) . . . U4(0, t− 1) λa U †4(0, t− 1) . . . U †4(0, 0) λb

]
×Tr

[
λb L1(0) U4(x1, 0) . . . U4(x1, t− 1) L†1(t)

×λa L2(t) U
†
4(x2, t− 1) . . . U †4(x2, 0) L†2(0)

]
, (4)

where Li(t) is a spatial path that links the origin (where the gluon is) to
the position xi in the time slice t. Using (3), this operator becomes Wqq̄g ∝
W1W2− 1

3W3 whereW1,W2 andW3 are the three fundamental (i.e. mesonic)
Wilson loops.

Fig. 2. Left: Quark–antiquark–gluon Wilson loop. Center and right: Antisymmet-
ric and symmetric three-gluons Wilson loop.

2.2. Three gluons Wilson loop

For the three gluons there are two possible colour wavefunctions, corre-
sponding to opposite charge conjugation properties. One is antisymmetric
and the other symmetric for the permutation of two gluons. For this case,
the Wilson loop operators have the form [8]
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W
A/S
3g = TabcTa′b′c′P̃1

aa′
P̃2

bb′
P̃3

cc′
, (5)

where Tabc = fabc for the antisymmetric case and Tabc = dabc for the sym-
metric, and

Pi = Li(0) U4(xi, 0) . . . U4(xi, t− 1) L†i (t) . (6)

The two three-gluon Wilson loops, as a function of fundamental paths
are given by

WA
3g ∝ Re

{
Tr

[
P1P

†
2

]
Tr

[
P2P

†
3

]
Tr

[
P3P

†
1

] }
−Re Tr

[
P1P

†
2P3P

†
1P2P

†
3

]
(7)

and

W S
3g ∝ Re Tr

[
P1P

†
2P3P

†
1P2P

†
3

]
+ Re

{
Tr

[
P †1P2

]
Tr

[
P †2P3

]
Tr

[
P †3P2

] }
− 2

3 Tr
[
P1P

†
2

]
Tr

[
P †1P2

]
− 2

3 Tr
[
P2P

†
3

]
Tr

[
P †2P3

]
− 2

3 Tr
[
P3P

†
1

]
Tr

[
P †3P1

]
+ 4

3 . (8)

3. Static potential results

3.1. Hybrid meson

For the hybrid meson, we study the static potential of the system as
a function of the quark–gluon distance (r1), the antiquark–gluon distance
(r2), and the angle θ between the quark–gluon and antiquark–gluon seg-
ments. By using off-axis directions on the lattice we can, not only compute
the potential for θ = 0◦, 90◦ and 180◦, but also for θ = 45◦, 60◦, 120◦ and
135◦.

First, we study the results for the hybrid meson for the special case
r1 = r2 = r, for the different values of θ. As can be seen in Fig. 3, for
large r the potentials are given by V (r) ∼ σ′r. We can also see that for all
angles we have σ′ ' 2σ, except for θ = 0◦, in which case we have σ′ = 9

4σ,
which is the value predicted by Casimir Scaling. This means that for θ = 0◦

an adjoint string is formed while for the other angles we essentially have two
independent fundamental strings.

Also in Fig. 3, we see the results for the potential with r1 = r2 = r as
a function of θ for various values of r. This results are fitted to a Coulomb
like potential, which in this case changes only with θ in the type II super-
conductor model. This model fits well the results for large θ and r.

With this results, we can see the existence of two regimes — one with
adjoint string formation (for θ = 0) and the other with fundamental strings.
To better understand the transition between the two, we are studying a ge-
ometry with a shape of a U , given in Fig. 3.
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Fig. 3. Upper left: Results for the V (r, r) on the hybrid meson for various angles
and comparison with two different string tensions. Upper right: Results for V (r, r)
as a function of θ for different values of r. Bottom: Results for the U geometry as
function of r1 = r2 = r for various values of quark–antiquark distance.

3.2. Three gluons

For the case of the three-gluon glueball, we study two geometries. One,
in which the three gluons are in three perpedincular axis and at the same
distance of the origin, forming an equilateral triangle, and another in which
one of the three gluons is at the origin and the other two are in the axis and
at the same distance of the other gluon, drawing a rect isosceles triangle.

For this geometries we study the difference between the two potentials
and the two potentials separately. Both results are shown in Fig. 4.

For Vsymm−Vanti we see that the difference is systematically positive and
rising linearly with the perimeter of the triangle, with a fitted string tension
σdiff = 0.04σ.

By fitting Vanti and Vsymm to a potential of the form V =C0−α
∑

i<j
1
rij

+
σ′p, where p is the perimeter of the triangle, we get σ′ = σ, showing that
the geometry of the strings is the triangle geometry and not the starfish
geometry, which would have given σ′ = 9

4
√

3
σ for the equilateral triangle,

and σ′ = 9(1+
√

3)

8(1+
√

2)
σ for the rect isosceles triangle.
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Fig. 4. Left: Results for the difference of the three gluon static potential in the two
colour arrangements. Right: Results for the three gluon potential as a function of
the perimeter of the triangle formed by the three quarks.

4. Conclusions

From both the results we see that the confinement is essentially described
by a type II superconductor model, except when the fundamental strings
overlap, in which case adjoint strings are formed. This result is important
for constituent quark and gluon models. In the three-gluon glueball this
type II superconductor behaviour manifests itself by the triangular string
geometry. However, this picture does not account for the formation of ad-
joint strings and does not explain the little systematic difference between
the static potential of the two colour wavefunctions.

In order to understand better the formation of the adjoint string and the
validity of the type II superconductor model, we are computing the static
distributions of the chromoeletric field in both systems.
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