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We present results of a calculation of the electromagnetic pion form
factor within the framework of QCD Sum Rules with nonlocal condensates,
using a perturbative spectral density which includes O(αs) contributions.
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1. Introduction

The pion — its distribution amplitude and form factor — stands tall
as a role model for the modern description of hadrons in terms of quarks
and gluons within QCD. At high momenta Q2, the pion form factor can be
written as a convolution Fπ(Q2) = ϕout

π ⊗ T (Q2) ⊗ ϕin
π on account of the

factorization theorem, where the symbol ⊗ means integration over the longi-
tudinal momenta of the quark and antiquark in the pion state factorized at
some scale µ2. All binding effects due to the nonperturbative color dynamics
are absorbed into the pion distribution amplitudes ϕin

π for the incoming and
ϕout
π for the outgoing pion. However, at low and intermediate momenta Q2,

this factorization procedure becomes inapplicable because the long-range
interactions cannot be separated into factorizing pion distribution ampli-
tudes ϕπ, as above, so that the convolution approach is not very reliable.
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In a recent paper [1], we have proposed a different theoretical frame-
work for the calculation of the pion form factor, which is based on QCD
sum rules with nonlocal condensates (NLC) [2–4], employing an axial–axial-
vector (AAV) correlator. Suffice it to say here that our scheme differs from
previous ones in several respects that will be considered in the next section.
A prolegomenon of the results we derived (see Sec. 3): the proposed method
yields predictions for the spacelike pion form factor that compare well with
the data in that momentum region which is currently accessible to mea-
surements, covering also the range of momenta to be probed by the 12GeV
upgraded CEBAF accelerator at JLab. Our conclusions are summarized
in Sec. 4.

2. Three-point QCD sum rule for the pion form factor

Let us make here a second, more detailed, pass on some of the topics
briefly mentioned in the introduction, recalling the AAV correlator∫ ∫

d4x d4y ei(qx−p2y)〈0|T
[
J+

5β(y)Jµ(x)J5α(0)
]
|0〉 , (1)

where q denotes the photon momentum (q2 = −Q2) and p2 is the outgoing
pion momentum. The quantities Jµ(x) = eu u(x)γµu(x) + edd(x)γµd(x)
and J5α(x) = d(x)γ5γαu(x), J+

5β(x) = u(x)γ5γβd(x) are the electromagnetic
current and the axial-vector currents, respectively, where eu = 2/3 and
ed = −1/3 stand for the electric charges of the u and the d quarks. Referring
for further details to [5, 6] for the case of local condensates and to [4] for
nonlocal ones, we proceed by writing down the sum rule we will employ:

f2
π Fπ

(
Q2
)

=

s0∫
0

s0∫
0

ds1 ds2 ρ3(s1, s2, Q
2) e−(s1+s2)/M2

+ΦG

(
Q2,M2

)
+ Φ〈q̄q〉

(
Q2,M2

)
. (2)

Note that the quark-condensate contribution

Φ〈q̄q〉
(
Q2,M2

)
= Φ4Q

(
Q2,M2

)
+ Φ2V

(
Q2,M2

)
+ Φq̄Aq

(
Q2,M2

)
(3)

contains the four-quark condensate (4Q), the bilocal vector-quark conden-
sate (2V), and the antiquark-gluon-quark condensate (q̄Aq), while the term
ΦG(Q2,M2) represents the gluon-condensate contribution to the sum rule.

The crucial quantity in the sum rule is the three-point spectral density

ρ
(1)
3

(
s1, s2, Q

2
)

=
[
ρ

(0)
3

(
s1, s2, Q

2
)

+
αs(Q2)

4π
∆ρ(1)

3

(
s1, s2, Q

2
)]

. (4)
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The leading-order spectral density has been calculated long ago [5,6], whereas
the analogous next-to-leading order (NLO) version ∆ρ(1)

3 (s1, s2, Q
2) has been

derived recently in [7]. The contribution from higher resonances is usually
taken into account in the form

ρHR(s1, s2) = [1− θ(s1 < s0)θ(s2 < s0)] ρ3

(
s1, s2, Q

2
)

(5)

and contains the continuum threshold parameter s0. In the investigation [1],
reported upon here, we use in the perturbative spectral density a version of
the running coupling that avoids Landau singularities by construction (see
for reviews in [8–10]). At the one-loop level, one has [8]

αs(Q2) =
4π
b0

 1

ln
(
Q2/Λ2

QCD

) − Λ2
QCD

Q2 − Λ2
QCD

 (6)

with b0 = 9 and ΛQCD = 300MeV.
The key elements of our analysis are these: (i) All interquark distances

in the quark-gluon-antiquark condensate are nonlocal and the nonlocality
is parameterized via the quark-virtuality parameter λ2

q [2] with the value
0.4 GeV2. (ii) A modified Gaussian model for the nonlocal condensate is
used, recently proposed in [11], and the prediction for Fπ is compared with
the results derived in [12], obtained by using the minimal Gaussian model
[3,13,14], and from other theoretical models [15,16] as well. The virtue of the
modified NLC model is that it helps minimizing the transversality violation
of the two-point correlator of vector currents. (iii) A spectral density is
used that includes terms of O(αs), i.e., NLO perturbative contributions.
Moreover, the coupling entering the spectral density is analytic, as stated
above, so that the calculation of the pion form factor is not influenced by the
Landau pole. It was shown in [12,17] that the Landau pole can obscure the
predictions for the pion form factor even at momentum values much larger
than ΛQCD.

3. Predictions

Using the presented scheme, we obtain predictions for the pion form fac-
tor [1], which are shown in Fig. 1. Our results are presented in the form
of shaded bands, the aim being to include the inherent theoretical uncer-
tainties of the method. The band contained within the solid lines gives the
predictions we obtained with the improved Gaussian NLC model, whereas
the corresponding findings from the minimal NLC model are shown in the
band with the dashed boundaries. The central curves in each band (illus-
trated by a thick solid and a thick dashed line) are interpolation formulas,
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whose explicit form can be found in [1]. For the understanding of these
predictions it is instructive to remark that our method provides results that
remain valid — though with reduced accuracy — even at higher values of the
momentum up to Q2 ≈ 10 GeV2.

Let us now discuss some technical details. The value of s0(Q2) at a given
value of Q2 is determined by demanding minimal sensitivity of Fπ(M2, s0)
on the Borel parameterM2 in the fiducial interval of the SR. These intervals
M2 ∈ [M2

−/2,M
2
+/2] are determined from the corresponding two-point NLC

QCD SR and turn out to beM2
− = 1 GeV2, M2

+ = 1.7 GeV2 for the minimal
NLC model and M2

− = 1 GeV2, M2
+ = 1.9 GeV2 for the improved NLC

model, while the associated values of the pion decay constant read fπ =
0.137 GeV2 and fπ = 0.142 GeV2, respectively. Notice that the value of
the Borel parameter M2 in the three-point SR roughly corresponds to the
Borel parameter in the two-point SR, having, however, twice its magnitude.
A stable window for the Borel parameter is obtained for thresholds in the
range between 0.65 and 0.85 GeV2 [1]. As a rule, the higher the value of s0,
the larger the form factor because the perturbative input increases.
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Fig. 1. Scaled pion form factorQ2Fπ(Q2) for the minimal (dashed lines) and the im-
proved (solid lines)NLC model using λ2

q=0.4GeV2 in comparisonwith experimen-
tal data of the Cornell [18] (triangles) and the JLab Collaboration [19] (diamonds).
The shaded band within dashed lines shows the minimal model, whereas the vari-
ance of the improved model is indicated by solid lines. The lattice result of [20]
is also shown as a dark-grey strip. The two broken vertical lines mark the region,
where the influence of the particular Gaussian NLC model used is not severe.

The sensitivity of the obtained form-factor predictions on the particular
NLC model employed is rather weak in the region of momenta delimited in
Fig. 1 by two vertical broken lines. We close this discussion by remarking
that the overall agreement between the obtained predictions and the avail-
able experimental data from [18,19] is rather good. Moreover, they comply
with the recent lattice calculation of [20], which is shown in the same figure
in terms of a dark-grey strip, bounded from above at Q2 ' 4GeV2.
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In Fig. 2, we compare our predictions with other theoretical results, de-
rived from the AdS/QCD correspondence (so-called holographic QCD), and
some other models (including also the experimental data). As in the previ-
ous figure, the shaded bands show our predictions for the minimal (dashed
lines) and the improved NLC model (solid lines). The dashed line at low-
Q2 (terminating at about 4 GeV2) represents the prediction derived in [5]
from QCD SR, while the thicker broken line below all other curves is the
result of a calculation [21] based on local duality QCD SR. The predic-
tions from AdS/QCD are denoted by the upper short-dashed line — soft-
wall model [15] — and the penultimate dash-dot-dotted line, obtained with
a Hirn–Sanz-type holographic model [16]. The LD result of [21] is shown as
a dash-dotted line.
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Fig. 2. Scaled pion form factor Q2Fπ(Q2) within a band including uncertainties for
the minimal (dashed lines) and the improved (solid lines) NLC model, using in both
cases λ2

q = 0.4 GeV2. The experimental data are as in Fig. 1. The predictions from
AdS/QCD are: upper short-dashed line — soft-wall model [15]; dash-dot-dotted
line — Hirn–Sanz-type holographic model [16]. The dash-dotted line corresponds
to the LD result of [21].

4. Conclusions

Here we have studied a three-point AAV correlator within the QCD sum-
rule approach with nonlocal condensates in order to obtain predictions for
the spacelike pion form factor pertaining to that momentum region accessible
to experiment at present and in the near future. The full-fledged analysis
can be found in [1], where we also included in our discussion the so-called
local-duality approach [5].

The principal ingredients of our approach are a spectral density that
includes O(αs) corrections, whereas the coupling used has an analytic struc-
ture without Landau singularities, and an improved Gaussian ansatz for the
nonlocal condensate. Our findings are supported by both the existing exper-
imental data and also a recent lattice calculation in the momentum range
up to approximately 10 GeV2.
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