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As in the case of the hydrogen atom, bound-state wave functions are
needed to generate hadronic spectra. For this purpose, in 1971, Feyn-
man and his students wrote down a Lorentz-invariant harmonic oscilla-
tor equation. This differential equation has one set of solutions satisfying
the Lorentz-covariant boundary condition. This covariant set generates
Lorentz-invariant mass spectra with their degeneracies. Furthermore, the
Lorentz-covariant wave functions allow us to calculate the valence parton
distribution by Lorentz-boosting the quark-model wave function from the
hadronic rest frame. However, this boosted wave function does not give an
accurate parton distribution. The wave function needs QCD corrections
to make a contact with the real world. Likewise, QCD needs the wave
function as a starting point for calculating the parton structure function.

PACS numbers: 11.10.5t, 11.30.Cp, 12.39.Ki

At the 1965 meeting of the American Physical Society held in Washing-
ton, DC, USA Freeman Dyson stated that quantum electrodynamics can
become more effective if combined with other theories [1|. He was right, but
he gave a wrong example. He mentioned the calculation of the neutron—
proton mass difference by Dahsen and Frautchi as an example. It is still
believed that the neutron and proton have the same mass, and the mass
difference comes from an electromagnetic perturbation. However, their per-
turbation calculation uses a non-localized a wave function which increases
exponentially for large distance [2].

Dyson was still right in saying that QED needs a partner to be most
effective. The partner is the localized bound-state wave function. Let us
look at the Lamb shift. QED gives to the Coulomb potential a delta function
correction at the origin. The S state gets affected by this potential, while
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the P state is insensitive to this correction at the origin. This results in the
shifts between P and S states. The Lamb shift is regarded as one of the
triumphs of quantum electrodynamics.

Indeed, in order to calculate the Lamb shift, we need hydrogen wave func-
tions, but quantum electrodynamics cannot produce localized wave functions
with probability interpretation. We still have to solve the wave equation with
the standing-wave boundary condition to get the Rydberg energy levels and
corresponding wave functions.

QED with Feynman diagrams is designed to address scattering problems
in the Lorentz-covariant world. The situation is the same in QCD, which
is an extension of QED with gluon instead of photons. QCD can make
corrections to the existing mass spectra and structure functions, but cannot
produce wave functions with proper boundary conditions. Thus, QCD alone
cannot produce hadronic mass spectra or parton distributions. It needs
a partner.

In 1971, Feynman and his students noted that harmonic oscillator wave
functions with their three-dimensional degeneracy can explain the main fea-
tures of the hadronic spectra [3]. Earlier in 1969 [4], Feynman proposed his
parton picture where a fast-moving hadrons appear like a collection of par-
tons with properties quite different from those of the quarks inside a static
hadron.

In their 1971 paper [3], Feynman et al. wrote down the Lorentz-invariant
equation which can be separated into the Klein—-Gordon equation for a free
hadron, and a harmonic-oscillator equation for the quarks inside the hadron,
which determines the hadronic mass. Feynman’s equation of 1971 contains
both running waves for the hadron and the standing waves for the quarks
inside the hadron, as indicated in Fig. 1.
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Fig.1. Quantum mechanics in Galilei and Einstein systems. It is possible to
construct a Lorentz-covariant model of bound states. Feynman and his students
in 1971 wrote down a Lorentz-invariant differential equation which contains both
running and standing waves.
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The oscillator equation takes the form

2
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where x,, is the four-vector specifying the space-time separation between the
quarks. For convenience, we ignore all physical constants such as ¢, h, as
well as the spring constant for the oscillator system.

In the hadronic rest frame, if the time-like excitations are suppressed, this
equation produces hadronic mass spectra [3]. If the hadron starts moving
along the z direction, we can separate out the transverse coordinates x and y,
and write the differential equation of Eq. (1) as

% [— (aaz)z +2+ (;)2 - tz] U(z,t) = Mp(z,1), (2)

where t is the time-separation variable between the quarks. From this equa-
tion, Feynman et al. wrote down their solution

P(z,t) = exp {—; (2% — t2)} : (3)

This form is a Gaussian function for the space-like z coordinate if the time-

like variable ¢ is ignored. It is also invariant under Lorentz boosts along

the z direction. However, due to its non-local time-like distribution, this

expression cannot be regarded as a physically meaningful wave function.
On the other hand, this equation also has a solution of the form

¥(z,t) :exp{—; (22+t2)}. (4)

This solution is Gaussian in both the z and ¢ variables. Is it then possible
to attach a physical interpretation to this wave function.

First, the time-separation t exists wherever there is a space separation,
according to Einstein. According to quantum mechanics, there is a time—
energy uncertainty relation associated with this variable, as shown in Fig. 2.

As Dirac noted in 1927 [5], this time—energy uncertainty does not cause
excitations, while Heisenberg’s uncertainty generate excitations along the
space-like z axis. However, this space-time asymmetry is quite consistent
the internal space-time symmetries dictated by Wigner’s little group [6,7].
According to Wigner, the internal space-time symmetry of massive particles
is that of the three-dimensional rotation group without the time variable.
We can summarize these in terms of the circle given in Fig. 2.
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Fig.2. Space-time picture of quantum mechanics. In his 1927, Dirac noted that
there is a c-number time-energy uncertainty relation, in addition to Heisenberg’s
position-momentum uncertainty relations, with quantum excitations. This idea is
illustrated in the first figure. In 1949, Dirac produced his light-cone coordinate
system as illustrated in the second figure. It is then not difficult to produce the
third figure, for a Lorentz-covariant picture of quantum mechanics.

How about the Lorentz invariance? The form given in Eq. (3) is invariant
under Lorentz boosts as (z2 — t2) is. However, the expression (22 =+ t2) in
Eq. (4) is not invariant. Is this the end of the story? No! Let us boost this
form using Dirac’s light-cone system [8].

If the hadron moves along the z direction with the velocity parameter 3,
the wave function of Eq. (4) becomes

exp{—i [ig(zqttf%—ig(z—tf]}. (5)

This is an elliptic distribution given in Fig. 2, where the circular distribution
is modulated by Dirac’s light-cone picture of Lorentz boosts. The circle is
“squeezed” into the ellipse.

The question is whether we can see the effects of this Lorentz squeeze in
the real world. In 1973 [9], in terms of Lorentz-squeezed hadrons, Kim and
Noz were able to explain the form factor calculation of Fujimura, Kobayashi,
and Namiki who derived the dipole cut-off of the proton form factor for large
momentum transfers [10].
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According to Fig. 2, the quark distribution becomes concentrated along
the immediate neighborhood of one of the light cones as the hadronic speed
becomes closer to that of light. In 1977 [7,11], Kim and Noz were able
to explain the peculiarities of Feynman’s parton picture. Partons have the
following peculiar properties:

1. Partons are like free particles, unlike the quarks inside a hadron.

2. The parton distribution function becomes wide-spread as the hadron
moves faster. The width of the distribution is proportional to the
hadron momentum.

3. The number of partons appears to be infinite.

In the ellipse given in Fig. 2, one of the axis becomes longer while the other
becomes shorter. In 2005 [12], Kim and Noz were able to associate these
axes as the interaction time between the quarks and the interaction time of
one of the quarks with the external signal, respectively. Thus, the external
signal is not able to sense other quarks in the hadron. This is what Feynman
said in his original papers on the parton model [4].

Kim and Noz indeed explained all the peculiarities of Feynman’s parton
picture, and proved that the quark model and the parton model are two dif-
ferent manifestations of one Lorentz-covariant entity. However, is it possible
to calculate the parton distribution function by boosting the quark wave
function from the rest frame? The hadron, when it moves fast, contains
both valence partons and gluonic partons. We should, therefore, obtain the
valence parton distribution by boosting the rest-frame wave function.
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Fig.3. Parton distribution function from Hussar’s paper [14]. Although there is
a general agreement between theory and experiment, the disagreement is substan-
tial. This difference could be corrected by QCD.
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In 1980 Hwa [13], observed that the external signals do not directly in-
teract with the quarks, but with dressed quarks called valons. Thus, if we
remove the valon effect, we should be able to measure the distribution of va-
lence quarks. With this point in mind, Hussar in 1981 compared the parton
distribution from the boosted oscillator wave function and the experimen-
tally measured distribution [14]. Hussar’s result is given in Fig. 3.

As we can see in this figure, there is a general agreement between the
experimental data and the theoretical curve derived from the static quark
distribution. Yet, the disagreement is substantial, and this is the gap QCD
has to feel in. This work is yet to be carried out. The wave function needs
QCD to make contacts with the real world. Likewise, QCD needs the wave
function as a starting point for calculating the parton distribution. They
need each other. They are the partners.
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