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Results of the chiral quark models for the soft matrix elements involving
pions and photons, relevant for high-energy processes, are reviewed. We
discuss quantities related to the generalized parton distributions of the pion:
the parton distribution functions, the parton distribution amplitudes, and
the generalized form factors. The model predictions are compared to the
data or lattice simulations, with good agreement. The QCD evolution
from the low quark model scale up to the experimental scales is a crucial
ingredient of the approach.

PACS numbers: 12.38.Lg, 11.30.Rd, 12.38.–t

The low-energy properties of the pion are dominated by the spontaneous
breakdown of the chiral symmetry, which is a key dynamical factor. It allows
to model the soft matrix element in a genuinely dynamical way [1–24]. There
are two basic elements in our analysis: the low-energy dynamical quark
model itself, and the QCD evolution, bringing the predictions from the low
quark-model scale to higher scales of the experiment or lattice data. This
talk is based on Refs. [25,26], where the details can be found.

The theoretical framework is conveniently set by the Generalized Parton
Distributions (GPDs) [27–35]. For the case of the pion, considered here, the
GPD for the non-singlet channel is defined as
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ε3abHq,NS(x, ζ, t)=
∫
dz−

4π
eixp

+z−〈πb(p′)|ψ̄(0)γ+ψ(z)τ3|πa(p)〉
∣∣∣
z+=0,z⊥=0

,

with similar expressions for the singlet quarks and gluons. We have omitted
the gauge link operators, absent in the light-cone gauge. The kinematics is
determined by p′ = p + q, p2 = p′2 = m2

π, q2 = −2p q = t, and ζ = q+/p+,
which denotes the momentum transfer passed along the light cone. Formal
properties of GPDs can be compactly written in the symmetric notation
involving ξ = ζ/(2− ζ), X = (x− ζ/2)/(1− ζ/2), where one has

HI=0(X, ξ, t) = −HI=0(−X, ξ, t) , HI=1(X, ξ, t) = HI=1(−X, ξ, t) .

For X ≥ 0 one finds where q(x)i denote the parton distribution functions
(PDFs). The following sum rules hold:

1∫
−1

dX HI=1(X, ξ, t) = 2FV (t) ,

1∫
−1

dX X HI=0(X, ξ, t) = 2θ2(t)− 2ξ2θ1(t) ,

where FV (t) denotes the electromagnetic form factor, while θ1(t) and θ2(t)
are the gravitational form factors [36]. Other important formal properties
are the polynomiality conditions [27], the positivity bounds [37,38], and a low-
energy theorem [39] relating the GPD to the pion distribution amplitude. We
stress that all these required properties are satisfied in our calculation [25].

With ζ = t = 0, the GPDs becomes the usual PDFs. In the Nambu–
Jona-Lasinio model [1] q(x) = 1. This result holds at the low-energy quark-
model scale, which needs to be determined. At this scale the quarks are the
only degrees of freedom. Thus, all observables are saturated with the quark
contribution. In particular, this holds for the momentum sum rule. From
experiment, the momentum fraction carried by the valence quarks is [42,43]

〈x〉v = 0.47(2) at Q2 = 4 GeV2 .

We evolve this value backward with the LO DGLAP equations down to
the scale where the quarks carry 100% of the momentum, 〈x〉v = 1. This
procedure yields the quark model scale

Q0 = 313+20
−10 MeV ,

where the range reflects the uncertainty in 〈x〉v.
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The results of this method for the non-singlet PDF of the pion are shown
in the left panel of Fig. 1. We have evolved the quark model result from the
scale Q0 up to the scale Q = 4GeVcorresponding to the E615 experiment
[40]. We notice a very good agreement. In the right panel we present the
same quantity evolved to the scale of Q = 350 MeV and confronted with the
transverse lattice data [41], designed to work at low-energy scales. Again,
the agreement is remarkable.
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Fig. 1. Left: chiral quark model prediction for the valence PDF of the pion, evolved
to the scale of Q = 4 GeV (band). The width of the band indicates the uncertainty
in the initial scale Q0. The data points come from the E615 experiment [40]. Right:
the same, evolved to the scale Q = 0.35GeV and compared to the data from the
transverse lattice calculations of Ref. [41].

Next, we look at the DA. Here the evolution is carried out with the LO
ERBL equations. The results, displayed in Fig. 2, again are in fair agreement
with the data, especially for the lattice case shown in the right panel.
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Fig. 2. Left: chiral quark model prediction for the pion DA evolved to Q = 2 GeV
(band) and compared to the E791 data [44]. The width of the band indicates the
uncertainty in the initial scale Q0. The dashed line shows the asymptotic form
φ(x,∞) = 6x(1 − x). Right: the same, evolved to Q = 0.5GeV and compared to
the transverse lattice data [41].
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In Ref. [25] we provide formulas for the GPDs in the NJL model and
in the Spectral Quark Model [46]. These expressions have a rather non-
trivial structure, not exhibiting factorization in the t and x variables, while
satisfying all the formal requirements mentioned above. Since there is no
data for the full kinematic range for the GPDs, we only present the results
for the generalized form factors, for which there is recent information from
the lattice QCD [45, 47]. The vector form factor and the quark part of the
gravitational form factor of the pion, obtained in the Spectral Quark Model,
are compared to these lattice data in Fig. 3. We note a very good agreement.
In the Spectral Quark Model the expressions are particularly simple

F SQM
V (t) =

m2
ρ

m2
ρ − t

,
θSQM
1,2 (t)

θSQM
1,2 (0)

=
m2
ρ

t
log

(
m2
ρ

m2
ρ − t

)
.

We note the longer tail of the gravitational form factor in the momentum
space, meaning a more compact distribution in the coordinate space. Ex-
plicitly, we find a quark-model formula 2〈r2〉θ = 〈r2〉V .

Finally, we compare our model values for the higher-order form factors
at t = 0 to the lattice data provided in Sec. 7 of Ref. [45], given below in
parenthesis. After the evolution to the lattice scale of Q = 2GeV we find

〈x〉 = 0.28± 0.02 (0.271± 0.016) ,
〈x2〉 = 0.10± 0.02 (0.128± 0.018) ,
〈x3〉 = 0.06± 0.01 (0.074± 0.027) .

The model error bars come from the uncertainty of Q0. We note that
the model predictions fall within the error bars. It should be mentioned
that while high energies are needed to test leading twist parton distribu-
tions, transverse and Euclidean lattices can directly evaluate them per se.
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Fig. 3. Left: the electromagnetic form factor. Right: the quark part of the grav-
itational form factor, θ1(t)/2, both computed in the Spectral Quark Model and
compared to the lattice data from Ref. [45]. The band around the model curves
indicates the uncertainty in the quark momentum fraction.
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In [48] we provide a handy way of undertaking evolution for generalized
form factors which are currently becoming directly available on Euclidean
lattices.

To briefly summarize, the chiral quark models supplied with the QCD
evolution work well for a wide variety of quantities related to the GPDs of
the pion and provide valuable insight into the non-perturbative dynamics
behind the soft matrix elements.
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