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EIGENVALUE DENSITY OF WILSON LOOPS
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The eigenvalue density of a Wilson loop matrix W associated with
a simple loop in two-dimensional Euclidean SU(N) Yang–Mills theory un-
dergoes a phase transition at a critical size in the infinite-N limit. The
averages of det(z − W )−1 and det(1 + uW )/(1 − vW ) at finite N lead
to two different smoothed out expressions. It is shown by a saddle-point
analysis that both functions tend to the known singular result at infinite N .

PACS numbers: 11.15.Ha, 11.15.Pg

1. Introduction

In two Euclidean dimensions the eigenvalue distribution of the SU(N)
Wilson matrix associated with a non-selfintersecting loop undergoes a phase
transition in the infinite-N limit as the loop is dilated [1]. This phase tran-
sition has universal properties shared across dimensions and across analog
two-dimensional models [2,3]. Thus, a detailed understanding of the transi-
tion region in 2D is of relevance to crossovers from weakly to strongly inter-
acting regimes in a wide class of models based on doubly indexed dynamical
variables with symmetry SU(N). Building upon previous work [4–6], new
results in this context have been obtained in [7]. Some of these results are
presented here.

We are focusing on the eigenvalues of the Wilson loop. The associated
observables are two different functions ρtrue

N (θ), ρsym
N (θ) of an angular vari-

able θ. At infinite N the two functions have identical limits: ρtrue
∞ (θ) =

ρsym
∞ (θ) ≡ ρ∞(θ).

For a specific critical scale, the nonnegative function ρ∞(θ) exhibits a
transition at which a gap centered at θ = ±π, present for small loops, just
closes. This transition was discovered by Durhuus and Olesen in 1981 [1].
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2. Eigenvalue densities

The probability density for the Wilson loop matrix W is given by the
heat kernel (see for example [8] and original references therein)

PN (W, t) =
∑
r

drχr(W )e−
t

2N
C2(r) (1)

with t = λA, where λ = g2N is the standard ’t Hooft coupling and A
denotes the area enclosed by the loop. The sum over r is over all distinct
irreducible representations of SU(N) with dr denoting the dimension of r
and C2(r) denoting the value of the quadratic Casimir on r. χr(W ) is the
character of W in the representation r and is normalized by χr(1) = dr.
Averages over W at fixed t are given by

〈O(W )〉 =
∫
dWPN (W, t)O(W ) , (2)

where dW is the Haar measure on SU(N) normalized by
∫
dW = 1. Note

that we have
∫
dWPN (W, t) = 1. Any class function can be averaged when

expanded in characters using character orthogonality.
Because in the sum over r in Eq. (1) each representation is accompanied

by its complex conjugate representation, it is easy to see that

〈O(W )〉 = 〈O(W †)〉 = 〈O(W ∗)〉 , (3)

implying identities relating 〈det(z−W )〉, 〈det(z−W )−1〉, and 〈det(1+uW )/
(1− vW )〉 to the same objects with z → 1/z, z → z∗, u, v → 1/u, 1/v, and
u, v → u∗, v∗, respectively.

The density functions ρsym
N and ρtrue

N are obtained from

Gtrue
N (z) =

1
N

〈
Tr

1
z −W

〉
=

1
N

∂

∂z
〈log det(z −W )〉 , (4)

Gsym
N (z) = − 1

N

∂

∂z
log
〈

det (z −W )−1
〉

(5)

through (` = true, sym)

ρ`N (θ) = 2 lim
ε→0+

Re
[
eiθ+εG`N (eiθ+ε)

]
− 1 . (6)

The ρ`N are real on the unit circle parametrized by the angle |θ| ≤ π, even
under θ → −θ, and depend on the size of the loop. Both are positive
distributions in θ, normalized by

π∫
−π

dθ

2π
ρ`N (θ) = 1 . (7)
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Only ρtrue
N has a natural interpretation at finite N , it literally is the

eigenvalue density. If the eigenvalues of W are eiαj with j = 0, 1, . . . , N − 1,
it is given by [7]

ρtrue
N (θ) =

2π
N

∑
j

〈δ2π(θ − αj(W ))〉 =
2π
N
〈Tr δ2π(θ + i log(W ))〉 . (8)

ρtrue
N determines 〈Tr f(W )〉 for any function f .

The density ρsym
N is determined by the averages of the characters ofW in

all totally symmetric representations of SU(N). This function is of interest
mainly because it obeys simple partial integro/differential equations which
are exactly integrable [5].

ρsym
N has an explicit form in terms of rapidly converging infinite sums [5],

which can be evaluated numerically for arbitrary N to any desired precision.
In Fig. 1 we show how ρsym

N (θ) approaches the infinite-N result ρ∞(θ) of
Durhuus and Olesen [1]. ρsym

N is monotonic on each of the segments (−π, 0)
and (0, π) with the maximum at θ = 0 and the minimum at θ = ±π. In ad-
dition to these numerical results, it would be useful to compute analytically
the asymptotic expansion of ρsym

N (θ) in 1/N (cf. Sec. 4).

0.5 1.0 1.5 2.0 2.5 3.0
Θ

0.5

1.0

1.5

Ρ

0.5 1.0 1.5 2.0 2.5 3.0
Θ

0.7

0.8

0.9

1.0

1.1

Ρ

Fig. 1. Plots of ρsym
N (θ, T ) for T = 2 (left), T = 5 (right), and N = 3, 5, 10, 25, 50,

100, 250 together with ρ∞(θ, T ).

It turns out that the appropriate area variable for ρsym
N is not t = λA

but T = t(1−1/N) [5]. When ρsym
N (θ, T ) is compared to ρtrue

N (θ, t), the 1/N
correction in t relative to T has to be taken into account (so far, the size
dependence of the ρ`N has been suppressed).

The infinite-N critical point is at T = 4. For T > 4, ρsym
N (θ, T ) ap-

proaches ρ∞(θ, T ) by power corrections in 1/N [5]. For T < 4, ρ∞(θ, T ) is
zero for |θ| > θc(T ), where 0 < θc(T ) < π and θc(4) = π (cf. Fig. 1). In
this interval ρsym

N (θ, T ) approaches zero by corrections that are exponentially
suppressed in N .
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The true eigenvalue density ρtrue
N (θ, t) hasN peaks (in the interval [−π, π])

and oscillates around ρsym
N (θ, T ) (cf. [7]). Plots of ρtrue

N (θ, t) and ρsym
N (θ, T )

are shown in Fig. 2 for t = 2 and t = 5.
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Fig. 2. Plots of the densities ρtrue
N (θ, t) (red, solid) and ρsym

N (θ, T ) (blue, dashed)
for t = 2 (left) and t = 5 (right), N = 10 (top), and N = 50 (bottom).

3. Integral representations

The density ρtrue
N can be obtained from the expectation value of [7]

R(u, v,W ) =
det(1 + uW )
det(1− vW )

=
N∑
p=0

∞∑
q=0

upvqχAp (W )χSq (W ) (9)

with |v| < 1. χAp (W ) (respectively, χSq (W )) denotes the character of W in
a totally antisymmetric (respectively, symmetric) representation. When we
set u = −v + ε and expand to linear order in ε, the LHS reads

R(−v + ε, v,W ) = 1− εTr
1

v −W †
. (10)

After decomposing the tensor product pA ⊗ qS into irreducible representa-
tions, we obtain for the expectation value of the trace (due to character
orthogonality)

R̄(v) ≡
〈

Tr
1

v −W †

〉
= −

N−1∑
p=0

∞∑
q=0

(−1)pvp+qe−
t

2N
C(p,q)d(p, q) , (11)
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where C(p, q) and d(p, q) denote the value of the quadratic Casimir and the
dimension of the irreducible representation identified by the Young diagram

1 2 q
1

p

(12)

and are given by [9]

C(p, q) = (p+ q + 1)
(
N − p+ q + 1

N
+ q − p

)
, (13)

d(p, q) = dA(p)dS(q)
(N − p)(N + q)

N

1
p+ q + 1

, (14)

dA(p) =
(
N

p

)
, dS(q) =

(
N + q − 1

q

)
. (15)

We can exactly calculate sums of the form (with |z| < 1)

N−1∑
p=0

updA(p)(N − p) = N(1 + u)N−1 ,

∞∑
q=0

zqdS(q)(N + q) =
N

(1− z)N+1
. (16)

To factorize the sums over p and q in Eq. (11), we first write

1
p+ q + 1

=

1∫
0

dρρp+q . (17)

The t-dependent weight factor is the exponent of a bilinear form in p and q
(given by Eq. (13)). By a Hubbard–Stratonovich transformation the depen-
dence on p and q can be made linear. Performing the (independent) sums
over p, q then leads to [7]

R̄(v) = −N
2

t
e−

t
2

∫ ∞∫
−∞

dxdy

2π

1∫
0

dρ e−
N
2t

(x2+y2)+ 1
2t

(x+iy)2− 1
2
(x−iy)

×
[
1− vρ e−x−t/2

]N−1[
1− vρ eiy−t/2

]N+1
(18)
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(valid for |v|< 1). Now the entire dependence on N is explicit. The infi-
nite-N limit of ρtrue

N can be obtained from this integral representation by
using a saddle-point approximation for the integrals over x and y (cf. Sec. 5).

4. Asymptotic expansion of ρsym
N

An integral representation for ψ(N)(z) = 〈det(z −W )−1〉, which deter-
mines ρsym

N , is obtained in a similar manner [5]. In this case, only a single
integral is needed (valid for |z| > 1),

ψ(N)(z) = e
NT
8

√
N

2πT

∞∫
−∞

du e−
N
2T
u2
(
ze−i

u
2 − ei

u
2

)−N
. (19)

The aim of this section is to construct an asymptotic expansion of ρsym
N (θ, T )

in powers of 1/N (cf. [7]). To this end we perform a saddle-point analysis of
the integral in Eq. (19), from which ρsym

N can be obtained via Eqs. (5) and (6).

4.1. Saddle-point analysis

For |z| = 1 the integrand of Eq. (19) has singularities on the real-u axis.
We, therefore, set z = eε+iθ, where ε > 0 ensures that |z| > 1 but will later
be taken to zero. The integrand of Eq. (19) can be written as exp(−Nf(u))
with

f(u) =
u2

2T
+ log

(
ze−i

u
2 − ei

u
2

)
. (20)

We now look for saddle points of the integrand in the complex-u plane,
which we label by ū = iTU(θ, T ), where U(θ, T ) = Ur(θ, T ) + iUi(θ, T ) is
a complex-valued function of θ and T . The saddle-point equation turns out
to be

e−TU(θ,T )U(θ, T ) + 1/2
U(θ, T )− 1/2

= eε+iθ . (21)

For ε = 0, this is Eq. (5.49) in [10] and is related to the inviscid complex
Burgers equation via Eq. (5.44) there. In the present notation, the latter
equation has the form

∂U

∂T
+ iU

∂U

∂θ
= 0 . (22)

Taking the absolute value of Eq. (21) leads to the equation

U2
i = Ur coth(TUr + ε)− U2

r − 1
4 . (23)
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For ε = 0, this equation has been investigated previously in [10]. However,
here we keep ε > 0 for the time being. The singularities of the integrand of
Eq. (19) then all have Ur < 0. Equation (23) describes one or more curves
in the complex-U plane on which the saddle points have to lie (for a given
value of θ, the saddles are isolated points on these curves).
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Fig. 3. Examples of the contours in the complex-U plane described by Eq. (23) for
T =3 (left), T =4 (middle), and T =5 (right). The red dashed curves are for small
ε > 0, while the black solid curves are for ε = 0. For our saddle-point analysis we
keep ε > 0.

In Fig. 3 we show typical examples for these curves for T < 4, T = 4,
and T > 4, where ε has been chosen sufficiently close to zero. (The closed
contours always enclose the points U = 1/2 or U = −1/2. For T > 4 and
larger ε, the closed contour in the left half-plane would be missing, but right
now we are not concerned with this since we are only interested in the limit
ε → 0+.) Analyzing Eq. (21) numerically we find, for all values of T , that
for a given value of θ there is always one (and only one) saddle point on
the closed contour in the right half-plane, i.e., with Ur > 0. Note that we
are showing the complex-U plane, in which the original integration contour
corresponds to the imaginary axis. The integration contour can be smoothly
deformed to go through the (single) saddle point in the right half-plane along
a path of steepest descent. No singularities are crossed since they all have
Ur < 0. There are also saddle points on the contour(s) in the left half-plane
(in fact, there are infinitely many on the open contour), but these need not
be considered. Fig. 4 shows an example for the location of the saddle points
and the deformation of the integration contour in the complex-u plane.

Once the integration contour has been deformed to go through the saddle
point, we can safely take the limit ε → 0+. Parametrizing the contour
in the vicinity of the saddle point by u = ū + xeiβ , where x is the new
integration variable corresponding to the fluctuations around the saddle and
β is the angle which the path of steepest descent makes with the real-u axis,
ψ(N)(eiθ, T ) is given, up to exponentially small corrections in N , by
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ψ(N)(eiθ, T ) =
1

2N

√
N

2πT
e
NT
8
−iNθ

2
+iβ

∞∫
−∞

dx e−Ng(x) , (24)

g(x)=
1

2T
(
xeiβ+iTU(θ, T )

)2+log sinh
iθ−ixeiβ+TU(θ, T )

2
. (25)

We can now expand g(x) in x. The linear order vanishes by construction.
The second order gives a Gaussian integral over x, resulting in

ψ(N)
(
eiθ, T

)
≈ e

NT
8

+
NTU2(θ,T )

2

[
e−iθ(1/4− U2(θ, T ))

]N/2√
1− T (1/4− U2(θ, T ))

. (26)

Note that the factor e−iθ cannot be pulled out of the term in square brackets
because periodicity in θ would be lost.
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Fig. 4. Example for the location of the saddle points and the deformation of the
integration contour in the complex-u plane for T = 5 and θ = 3 (with small ε > 0).
The thin solid lines are lines of constant Ref(u), the arrows point in the direction
of increasing Ref(u). On each of the closed orange dashed curves there is one
saddle point (red dot in the lower half-plane and blue dot in the upper half-plane),
and on the open orange dashed curve there are infinitely many saddle points, but
only one of them in the region shown in the plot (green dot). The thick blue curve
(through the saddle point in the upper half-plane) is the integration path along the
direction of steepest descent through the relevant saddle point.
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There is a potential complication. In principle, g′′(0) and, therefore, the
denominator in Eq. (26) could be zero, which would mean that the integral
over x cannot be performed in Gaussian approximation. For T > 4, it is
straightforward to show that g′′(0) is never zero. For T ≤ 4, one can use
Eq. (21) to show that g′′(0) = 0 only for the saddle points corresponding
to the two angles θ = ±θc(T ) at which ρ∞(θ, T ) becomes zero (see Sec. 2).
This means that for |θ| = θc(T ) the asymptotic expansion in 1/N diverges,
and that it converges ever more slowly as |θ| → θc from below.

Note that for T < 4 and θc(T ) ≤ |θ| ≤ π the function ρsym
N (θ, T ) is ex-

ponentially suppressed in N . The study of the large-N asymptotic behavior
in this region requires more work.

4.2. Leading-order result

Equation (26) is the leading order in the 1/N expansion of ψ(N)(eiθ, T ).
We now show that it leads to ρsym

N (θ, T ) → ρ∞(θ, T ) as N → ∞. We first
write Eq. (26) in the form

1
N

logψ(N)
(
eiθ, T

)
=
T

8
− f(ū) +O(1/N) . (27)

Note that in this order we do not need the denominator in Eq. (26), which
corresponds to f ′′(ū) (or g′′(0)). Using ū = iTU this leads to

Gsym
N (z) =

1
z − e−TU

+O(1/N) =
1
z

(
U +

1
2

)
+O(1/N) , (28)

where in the last step we have used the saddle-point Eq. (21). Equation (6)
then gives

lim
N→∞

ρsym
N (θ, T ) = 2ReU(θ, T ) , (29)

which equals ρ∞(θ, T ) of DO [1, 11] since U(θ, T ) satisfies Eq. (21) (which
leads to Eq. (44) below with λ = U − 1/2 and v = 1/z).

4.3. 1/N correction to ρ∞
Higher-order terms in the 1/N expansion of ψ(N)(eiθ, T ) can be obtained

in the standard way by considering higher powers of x in the expansion of
g(x), resulting in integrals of the type

∫∞
−∞ dxx

2ne−g
′′(0)x2/2 with n ∈ N.

However, if we are only interested in the 1/N correction to ρ∞(θ, T ) the
result Eq. (26) is already sufficient (1/N corrections to this result would
give 1/N2 corrections to ρ∞(θ, T )). Therefore, we now write

1
N

logψ(N)
(
eiθ, T

)
=
T

8
− f(ū)− 1

2N
log[Tf ′′(ū)] +O

(
1/N2

)
, (30)
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which leads to:

ρsym
N (θ, T ) = 2Re

[
U

(
1 +

1
N

T
(
1/4− U2

)
[1− T (1/4− U2)]2

)]
+O

(
1/N2

)
. (31)

Note that for T ≤ 4 and |θ| → θc(T ) (from below) the denominator of the
1/N term approaches zero, which corresponds to the complication discussed
in Sec. 4.1. Note also that for T ≤ 4 and |θ| > θc the saddle point U(θ, T ) is
purely imaginary so that both the leading order and the 1/N term are zero.
This confirms that the above saddle-point analysis is not the right tool to
compute finite-N effects in this region.

In Fig. 5 we show examples for the 1/N corrections to ρ∞(θ, T ) for
N = 10 and T = 2 and 5.
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Fig. 5. Examples for the 1/N corrections to ρ∞(θ, T ) for N = 10, T = 2 (left),
and T = 5 (right). Shown are the exact result for ρsym

N (θ, T ) (blue) dashed curve,
the infinite-N result ρ∞(θ, T ) (red) dotted curve, and the asymptotic expansion of
ρsym

N (θ, T ) up to order O(1/N) (black) solid curve. We observe that the asymptotic
expansion converges rapidly for small |θ| and more slowly for larger |θ|.

5. Saddle-point analysis for ρtrue
N

We now turn to the integral representation Eq. (18) to take the first steps
in a 1/N expansion of ρtrue

N (θ, t) (cf. [7]). Since this integral representation
was derived for |v| < 1, we set v = eiθ−ε with |θ| ≤ π, ε > 0, and take the
limit ε→ 0 at the end. We write (18) as

R̄(v) =− N2

t
e−

t
2

∫ ∞∫
−∞

dxdy

2π

1∫
0

dρe−
N
2t(x2+y2)+ 1

2t
(x+iy)2− 1

2
(x−iy)

×exp
{
(N−1) log

(
1−vρe−x−t/2

)
−(N+1) log

(
1−vρeiy−t/2

)}
. (32)
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At large N , the integrals over x and y decouple at leading order and can be
done independently by saddle-point approximations. Let us start with the
integral over y since it is conceptually simpler. The y-dependent coefficient
of the term in the exponent in equation (32) that is proportional to −N is

f̄(y) =
1
2t
y2 + log

[
1− vρeiy−

t
2

]
. (33)

Substituting y = u − it/2 = it(U − 1/2) (with u = itU in analogy to
Sec. 4) results in exactly the same integrand that was already considered
in Sec. 4, with the replacements T → t and z → 1/vρ (with |vρ| < 1)
and with an integration over u that is now along the line from −∞ + it/2
to +∞ + it/2. Since there are no singularities between this line and the
real-u axis we can change the integration path to be along the real-u
(or imaginary-U) axis. Now everything goes through as in Sec. 4. The
saddle-point equation reads

e−tU
U + 1/2
U − 1/2

=
1
vρ

, (34)

which is equivalent to Eq. (21). In Fig. 6 we show the contours in the
complex-U plane on which the solutions of the saddle-point equation have to
lie. (For sufficiently small ρ we now encounter the case mentioned in Sec. 4.1
where for t > 4 the closed contour in the left half-plane is missing.) The
relevant saddle point, which we denote by y0(θ, t, ρ), is again on the closed
contour in the right half-plane. For decreasing ρ this contour contracts, but
this makes no difference to our analysis. The result for the y-integral is given
by an expression similar to Eq. (26).

Fig. 6. Contours of solutions of Eq. (34) in the complex-U plane at t = 3 (left),
t = 4 (middle), and t = 5 (right) for ρ = 1 (black, solid), ρ = 0.9 (red, dashed),
ρ = 0.6 (green, dot-dashed), and ρ = 0.3 (blue, dotted). In the figures (but not in
the analysis) we have taken |v| = 1 for simplicity.
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We now turn to the integral over x. The x-dependent coefficient of the
term in the exponent in Eq. (32) that is proportional to −N is

f̃(x) =
1
2t
x2 − log

[
1− vρe−x−t/2

]
= −f̄(ix) . (35)

Substituting x = −iu− t/2 = t(U − 1/2) (with u = itU) again leads to the
integral considered in Sec. 4 and the saddle-point Eq. (34), except that the
integration is now along the real-U axis. The positions of the saddle points
of the x-integral are obtained by rotating the saddles of the y-integral by
−π/2 in the complex-U plane, i.e., xs = −iys. At a saddle point we have

f̃ ′′(xs) =
1
t

+
xs

t

(
1 +

xs

t

)
= f̄ ′′(ys) , (36)

and, therefore, the directions of steepest descent through a saddle ys and the
corresponding saddle xs = −iys are identical (no rotation). By analyzing the
directions along which the phase of the integrand is constant, we find that the
integration contour can always be deformed to go through the (single) saddle
point in the right half-plane in the direction of steepest descent. Depending
on the parameters ρ, v, and t, there is either one or no additional saddle
point on the contour(s) in the left half-plane through which we can also go
in the direction of steepest descent. If there is such an additional saddle
point, we find that its contribution to the integral is always exponentially
suppressed inN compared to the saddle point in the right half-plane and can,
therefore, be dropped from the saddle-point analysis. In addition, there are
infinitely many more saddle points on the open contour in the left half-plane.
However, we cannot deform the integration path to go through these points
in the direction of steepest descent and, therefore, do not need to include
them. An example for the location of the saddle points and the deformation
of the integration path is given in Fig. 7. To summarize, the x-integral can
be approximated by the contribution of the single saddle point in the right
half-plane, which again leads to an expression similar to Eq. (26).

Combining the saddle-point approximations for the integrals overx and y,
we find that, up to exponentially small corrections in N , the integral in
equation (32) is given by

R̄(v) = −N
2

t
e−t/2

1∫
0

dρ
1

2π

(
2π

Nf̃ ′′(x0)

)
1

(1− vρe−x0−t/2)2
e−x0 , (37)

where x0 = x0(θ, t, ρ) is the dominating saddle point of the x-integral.
x0 is a solution of the saddle-point equation obtained by differentiating f̃(x),
which can be written as

vρe−x0−t/2 =
x0

x0 + t
(38)
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Fig. 7. Example for the location of the saddle points and the deformation of the
integration path in the complex-U plane for t = 5 and ρ = 0.95. The dotted black
curves (two closed, one open) are the curves on which all saddle points have to lie,
cf. Eq. (23). In this example θ = 3.0. On each of the closed curves there is one
saddle point (red dot in the left half-plane and blue dot in the right half-plane),
and on the open curve there are infinitely many saddle points, but only one of
them in the region shown in the plot (green dot). The thin solid lines are lines
of constant Re f̃(x) and Re f̄(y). The arrows point in the direction of increasing
Re f̃(x) or decreasing Re f̄(y). The open dashed blue curve (through the saddle
point in the right half-plane) is the integration path for the y-integral along the
direction of steepest descent. The solid red-blue curve (through the saddle points
on the closed dotted curves) is the integration path for the x-integral along the
direction of steepest descent.

and leads to (
1− vρe−x0− t2

)2
=
(

t

t+ x0

)2

. (39)

With (36) we obtain

f̃ ′′(x0)
(

1− vρe−x0− t2
)2

=
t+ x0 (t+ x0)

(t+ x0)2
(40)

and R̄(v) = −N
t
e−

t
2

1∫
0

dρ
(t+ x0)2

t+ x0 (t+ x0)
e−x0 . (41)

Differentiating Eq. (38) with respect to ρ leads to

∂x0

∂ρ
=

1
ρ

x0 (t+ x0)
t+ x0 (t+ x0)

= ve−x0−t/2 (t+ x0)2

t+ x0 (t+ x0)
, (42)

which yields
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R̄(v) = −N
tv

1∫
0

dρ
∂x0

∂ρ
= −N

tv
[x0(θ, t, ρ = 1)− x0(θ, t, ρ = 0)] . (43)

We know from Eq. (38) that x0(θ, t, ρ=0)=0. If we parametrize x0(θ, t, ρ=1)
= λ(θ, t)t, where λ(θ, t) has to solve

λ =
1

1
v e

t(λ+1/2) − 1
, (44)

and take the limit ε→ 0+, we end up with

R̄(v) = −Nλ(θ, t)
v

, v = eiθ . (45)

Here we need to keep in mind that we have to pick the solution of Eq. (44)
which corresponds to the dominating saddle point x0 of the x-integral for
|vρ| < 1.

Using Eq. (6) and

G(z) =
1
z
− 1
z2N

R̄
(
z−1
)

(46)

we obtain

lim
N→∞

ρtrue
N (θ, t) = 1 + 2Reλ(θ, t) , (47)

which is equal to ρ∞(θ, t) [1, 11]. Keeping higher orders in the saddle-point
approximation (as explained in Sec. 4.3), we can compute the asymptotic
expansion of ρtrue

N (θ, t) in powers of 1/N .

6. Conclusions

The probability distribution of Wilson loops in SU(N) YM in two Eu-
clidean dimensions can be written as a sum over irreducible representations
(where only dimension, second-order Casimir, and character of W enter).
This allows for the derivation of integral representations for different den-
sity functions (including the true eigenvalue density), which have the same
infinite-N limit. These integral representations, whereN enters only as a pa-
rameter, are exact for any finite N . Results at infinite N can be obtained by
saddle-point approximations. Next-order terms in an expansion in 1/N give
reasonable results in the interval where ρ∞(θ) > 0. More work is needed
to get finite N effects where ρ∞(θ) = 0 and corrections are exponentially
suppressed in N .
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