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We consider large N pure gauge lattice QCD on a cubical torus in 2+1
dimensions. The theory has four continuum phases: 0c, 1c, 2c and 3c,
where the numeral denotes the number of lattice directions with broken
center symmetry. We show through numerical calculation on lattices of
size 2 ≤ L ≤ 8 that 1c–2c and 2c–3c phase transitions are weak first order.
Some remarks are made about the nature of the 0c–1c phase transition.
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1. Introduction

’t Hooft showed in 1974 [1] that QCD-like field theory with gauge group
SU(N) is significantly simplified in the limit N → ∞. The leading contri-
bution to the perturbative expansion comes from pure gauge planar graphs,
hence the other name of the theory — planar QCD. One can also naturally
identify 1/N as an expansion parameter and hope to achieve “real” QCD as
a well-behaved perturbation around the planar theory at N = 3.

Unfortunately, analytic solution of planar QCD has been unattainable so
far, despite substantial progress made in its understanding (see e.g. [2, 3]).
One can, however, use the lattice regularization to investigate many aspects
of the theory. This approach leads to very interesting theoretical properties
(like the Eguchi–Kawai reduction [4]) and allows numerical computations
on finite lattices. Although large N lattice calculations have been made for
over 3 decades, rising computational power has given a new perspective to
this field in the last few years.

In this paper we restrict ourselves to pure gauge theory — in large N
limit the fermions are quenched [1] and one can expect that dynamics of the
theory will be determined by the bosonic sector. We also consider lattices
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in 2 + 1 dimensions, mostly for numerical reasons. As we will see in the
next section, in the examined case, the three dimensional model exhibits
qualitatively similar behaviour as the four dimensional one.

2. Large N phase diagram

2.1. Polyakov loops

We consider SU(N) gauge theory on an isotropic L3 periodic lattice
with standard Wilson plaquette action. Note that a line of length L in any
given direction µ is a closed contour. We define Polyakov loop matrix Pµ
as a product of link variables along such a contour. Its trace, called the
Polyakov loop, is a gauge invariant quantity — a kind of uncontractible
Wilson loop.

The theory exhibits additional global symmetry — select all the links
Uµ(x) with set xµ coordinate and modify them in a following manner:

Uµ(x)→ CUµ(x) , (1)

where C is an element of the center of SU(N), namely ZN . All the con-
tractible Wilson loops are invariant under this transformation but the Poly-
akov loops in the direction µ get multiplied by C.

Therefore, if the center symmetry is not spontaneously broken in any
given direction µ then all the Polyakov loops TrPµ must be zero (as well as
any other uncontractible Wilson loops winding around that direction).

Also, as Narayanan and Neuberger have noticed [5], if this symmetry
holds in the large N limit (where ZN → U(1)) then no physical quantity
can depend on the size of the lattice in that direction — this is a simple
generalization of the Eguchi–Kawai reduction [4] (for more details on this
concept, see [6]).

2.2. Center symmetry breaking phase transitions

There is another interesting property related to the spontaneous breaking
of the center symmetry. It was shown [7] that in finite temperature field
theory one can treat the average Polakov loop in the temporal direction as
the order parameter of quark confinement–deconfinement transition (see [8]
for a more detailed discussion).

On an isotropic torus, which corresponds to a zero temperature euclidean
field theory in the limit L→∞, the situation is more complex because none
of the directions is a priori distinguished. Therefore, we may suspect that
the center symmetry might be broken in every direction of the lattice.
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Indeed, numerical analyses in both three [5,9] and four [10,11] dimensions
show that there is a cascade of phase transitions which break the center sym-
metry in consecutive directions. On the other hand, there is no symmetry
breaking in two dimensional case [12].

A schematic three dimensional phase diagram is pictured in Fig. 1. In
four dimensions, the diagram is very similar [11], with phase transitions
breaking the U(1) symmetry in all four directions.

Fig. 1. Schematic phase diagram of planar QCD on L3 lattice (after [13]).

The 0h−Xc is a transition in the plaquette distribution. It is an equiv-
alent of two-dimensional Gross–Witten transition [12]. The lack of scaling
of critical b with L indicates that this transition is a lattice artifact [9].

The Xc− (X+1)c transitions break the center symmetry. The 0c−1c
transition is the equivalent of the deconfining phase transition in finite tem-
perature case. This transition is first order in large N finite temperature
model [14,15]. We might expect similar behaviour in zero temperature.

The other two transitions (1c–2c and 2c–3c) are specific to zero temper-
ature model. Arguments were given [9] that they are also most likely first
order. We will check these hypotheses numerically in the next section.

3. Numerical results

3.1. Simulation method

We are using standard Monte Carlo setup: an L3 lattice with periodic
boundary conditions andWilson action for the gauge fields. A typical update
consists of one lattice sweep using a heatbath algorithm followed by one to
nine overrelaxation sweeps.

The heatbath (or rather pseudo-heatbath) is the Cabbibo–Marinari up-
date [16] of all N(N−1)

2 SU(2) subgroups. For practically every calculation
in this work, the Kennedy–Pendleton version of the SU(2) heatbath [17]
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was used. Overrelaxation sweeps are meant to achieve faster decorrelation
of observables. We are using full SU(N) overrelaxation, based on [10] (see
also [18]).

We are also using APE smearing [19] to diminish ultraviolet renormal-
ization of the observables. Although this operation is not crucial in 2 + 1
dimensions, it makes the analysis in the vicinity of phase transitions easier.

The observables we use to identify the phases are: plaquette traces,
Polyakov loops and Polyakov loop matrix eigenvalues. Note that the set of
eigenvalues of a loop operator is gauge invariant since the gauge transfor-
mation

UΓ → ωUΓω
−1 , ω ∈ SU(N) (2)

does not change the eigenvalues.

3.2. Phase diagram

We find the phase diagram in the following manner: for every L we
create a “hot” random lattice corresponding to b = 0 and cool it gradually
increasing b until we get a stable 3c phase. Then we heat it up to 0h again.

Next, for a more precise analysis of a phase transition we make two
thermalised configurations on both sides of the transition region — let us
call them “hot” and “cold”. Then, we pick b ∈ (bhot, bcold) and make two runs
at this value of b — one starting from the “hot” configuration and another
from the “cold” one. If both configurations clearly converge to the same
phase we identify it as a stable phase. The calculated phase diagram is
presented in Fig. 2.
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Fig. 2. Phase transitions on an L3 lattice.
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All the points on the phase diagram were calculated using N = 55. The
exception is L = 2 where the calculations were done at N = 70. Using large
values of N is necessary especially in the vicinity of the phase transitions
to diminish finite size effects on such small lattices. All the directions are
a priori equal and the competition between them (observed as swapping of
the broken directions with the unbroken ones) makes it hard to determine
the transition point precisely.

Calculated results for 3 ≤ L ≤ 6 can be compared to [9]. The results are
consistent with each other but uncertainties in both cases are quite large.

3.3. Analysis of the 0c–1c phase transition

The transition can be seen best in the Polyakov loops. For each config-
uration we calculate the moduli of the Polyakov loops. Then we take the
average over the lattice sites for all three directions separately (denoted by
|TrPµ|). Next, we sort the values to eliminate the effect of exchange of di-
rections. The order parameter for the transition is |TrPmax| where “max”
denotes the direction in which the modulus of the trace is the largest.
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Fig. 3. 0c–1c phase transition. Results of run V = 23, N = 70, b = 0.4836:
evolution and probability distribution of maximal average Polyakov loop ((a) and
(b), respectively) and average plaquette ((c) and (d), respectively).
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For L = 2 we get a clear evidence of coexistence of phases in the transi-
tion region — a sample run is pictured in Fig. 3. That is a clear sign that
the transition is likely to be first order.

In Fig. 3 we can also see the values of average plaquette. The peaks
of the average plaquette are clearly separated. Yet, we are talking of an
extremely small lattice so the measured latent heat per unit volume is very
small and the transition is likely to be very weak. That is in agreement with
finite temperature measurements [14].

Small latent heat of the transition indicates that there may be problems
with calculations at larger L. That is indeed the case. As we get closer
to the phase transition at L > 2 we can see very rapid swapping of the
directions. Most configurations are calculated during a swap so, obviously,
we get single-peaked distributions both in Polyakov loops and the plaquette.
This behaviour makes it impossible to establish the order of the deconfining
transition at considered values of N with the methods we use.

3.4. Analysis of 1c–2c and 2c–3c phase transitions

We use the same methods to analyse 1c–2c and 2c–3c phase transitions.
The order parameters we use are |TrPmid| and |TrPmin|, respectively, (where
“min” is the direction in which the modulus of the trace is the smallest and
“mid” is the “middle” direction).

For both transitions we see the coexistence of phases for 2 ≤ L ≤ 8.
Example runs for 1c–2c and 2c–3c transitions are pictured in Fig. 4 and 5,
respectively. However, the plaquette distributions are always single-peaked
and already at L = 4 the latent heat is inextractible from the simulation
noise. We conclude that both transitions are very weak first order.
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Fig. 4. 1c–2c phase transition. Results of run V = 53, N = 55, b = 1.5: evolu-
tion and probability distribution of “middle” average Polyakov loop ((a) and (b),
respectively).
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Fig. 5. 2c–3c phase transition. Results of run V = 43, N = 55, b = 1.98: evolu-
tion and probability distribution of minimal average Polyakov loop ((a) and (b),
respectively).

4. Summary

We analyse the phase diagram of large N lattice pure gauge QCD on an
isotropic torus in 2+1 dimensions for lattice size 2 ≤ L ≤ 8. We observe four
continuum phases: 0c, 1c, 2c, 3c corresponding to broken U(1) symmetry in
respectively zero, one, two and three directions.

The 0c–1c phase transition is the hardest to analyse — for L = 2 we get
double-peaked distributions for both the order parameter (Polyakov loops)
and the plaquettes but for larger L rapid changing of the broken direction
makes it impossible to say whether we are dealing with a weak first order or
continuous transition.

For 1c–2c and 2c–3c phase transitions we get double-peaked distributions
of the Polyakov loops. However, in both cases the plaquette distribution is
single-peaked — this signals that both transitions are weak first order.
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