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We present the results of a mixed action approach, employing dynami-
cal twisted mass fermions in the sea sector and overlap valence fermions,
with the aim of testing the continuum limit scaling behaviour of physical
quantities, taking the pion decay constant as an example. To render the
computations practical, we impose for this purpose a fixed finite volume
with lattice size L ≈ 1.3 fm. We also briefly review the techniques we have
used to deal with overlap fermions.

PACS numbers: 11.15.Ha, 12.38.Gc

1. Introduction

Lattice QCD is considered to be the most effective way of studying the
non-perturbative aspects of the field theory of strong interactions, Quan-
tum Chromodynamics (QCD). It is a regularization of QCD, which consists
in discretizing the relevant degrees of freedom by putting them on a four
dimensional lattice with lattice spacing a, its inverse being the ultraviolet
cutoff of the theory. With the present generation of supercomputers, large
scale dynamical simulations are performed by a number of collaborations
using different types of gauge and fermionic lattice actions. However, for
some classes of actions, such as overlap fermions, which exactly preserve
chiral symmetry, such simulations are extremely demanding1. A promis-
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1 For instance, the JLQCD and TWQCD Collaborations are simulating dynamical
overlap fermions, but in their case the global topological sector is kept fixed [1].

(497)



498 K. Cichy, G. Herdoiza, K. Jansen

ing alternative for fully dynamical simulations with overlap fermions is the
mixed action approach, which consists in using a computationally faster for-
mulation for the fermions in the sea, such as Wilson twisted mass fermions,
while using overlap fermions in the valence sector. In this way, one avoids
the most computer-intensive part of a dynamical simulation with overlap
fermions, but at the same time one profits from having such fermions in
the valence sector. In the case of overlap fermions, its exact chiral symme-
try gives the benefit of simplifying the operator mixing problem, something
which is essential in several types of lattice computations, like the determi-
nation of the kaon bag parameter BK .

In this paper, we present the results of a mixed action approach with
overlap fermions in the valence sector and Wilson twisted mass fermions in
the sea sector2. In Section 2 we briefly review the overlap formulation and
the techniques necessary to apply it effectively. Section 3 gives the descrip-
tion of our setup and in Section 4 we present the continuum-limit scaling
test of overlap fermions and we discuss the results. Section 5 concludes.

2. A brief review of overlap fermions

Since this contribution is written for a more general audience, we provide
here a very short review of overlap fermions.

2.1. The need for overlap fermions

A very general problem of lattice field theory with fermions is the dou-
bling problem. With a naive fermion discretization, instead of one fermion
in the continuum limit, one has 16 fermions in 4 dimensions of spacetime. As
was originally proposed by Wilson [4], the doubling problem can be solved
by using the following Wilson–Dirac operator:

DW(m) = 1
2

(
γµ(∇∗µ +∇µ)− ar∇∗µ∇µ

)
+m, (1)

where ∇∗µ (∇µ) is the backward (forward) lattice derivative, r — Wilson
parameter, m — bare quark mass. However, the Wilson term in the above
Dirac operator explicitly breaks chiral symmetry, which is in accordance with
a general theorem proved by Nielsen and Ninomiya [5] back in 1981 that it is
impossible to have at the same time for a Dirac operator D: locality, trans-
lational invariance, no doublers and chiral symmetry, i.e. {D(p), γ5} = 0.
Since Wilson’s proposal, much of the effort went into finding a lattice theory
without doublers which preserves the largest possible number of symmetries,
and at the same time reaches the continuum limit as fast as possible (which
practically means the absence of O(a) leading cutoff dependence).

2 For an account of earlier stages of the project, see [2, 3].
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In 1982 (i.e. only one year after establishing the Nielsen–Ninomiya the-
orem), it was shown by Ginsparg and Wilson [6] that a remnant of chiral
symmetry is present on the lattice without the doubler modes, if the cor-
responding Dirac operator D obeys an equation now called the Ginsparg–
Wilson relation:

γ5D +Dγ5 = aDγ5D . (2)

However, the solutions to this equation were not known for many years, until
a particularly simple form of a Dirac operator obeying the Ginsparg–Wilson
relation was given by Neuberger [7] in 1997. Neuberger’s discretization is
now usually referred to as overlap fermions3 and the (massless) overlap Dirac
operator is of the form:

Dov(0) =
1
a

(
1−A

(
A†A

)−1/2
)
, (3)

where:
A = 1− aDW(0) . (4)

It was also found that the overlap Dirac operator is local under very general
conditions [9]. Moreover, in 1998 Lüscher [10] found that the Ginsparg–
Wilson relation leads to a non-standard realization of lattice chiral symme-
try. The action is invariant under:

ψ → eiθγ5(1−
aD
2 )ψ , (5)

ψ̄ → ψ̄eiθγ5(1−
aD
2 ) . (6)

Although it is not the standard form of chiral symmetry, it still correctly
reproduces the anomaly and protects the fermions from additive mass renor-
malization and O(a) lattice artifacts. The non-standard realization of chiral
symmetry means also that the conditions of the Nielsen–Ninomiya theorem
do not apply and one can have chiral symmetry (which becomes standard
chiral symmetry in the continuum limit) without the doublers.

In order to simulate massive overlap quarks, one uses the following form
of the Dirac operator:

Dov(m) =
(

1− am

2

)
Dov(0) +m, (7)

where m is the bare overlap quark mass and Dov(0) the massless overlap
Dirac operator of Eq. (3).

3 For a review of overlap fermions see e.g. [8].
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2.2. Techniques to effectively deal with overlap fermions

The main disadvantage of overlap fermions is that they are much more
costly to simulate — by a factor of 30–120 in comparison with maximally
twisted mass fermions [11]. Moreover, this factor increases when approaching
the physical pion mass. Therefore, it was essential to develop techniques to
effectively deal with overlap fermions. The aim of this subsection is to briefly
review them.
Computation of the overlap operator. The first important thing is to
effectively calculate the overlap Dirac operator itself. This is non-trivial,
since it involves the inverse of the square root of a matrix. There are sev-
eral ways to do this, including polynomial approximations, Lanczos based
methods and partial fraction expansion. For overviews of these methods, see
e.g. [12,13]. The method that we have chosen is a Chebyshev polynomial ap-
proximation, which consists in constructing a polynomial Pn,ε(x) of degree n,
which has an exponential convergence rate in the interval x ∈ [ε, 1]. The
advantages of using this approximation are the well-controlled exponential
fit accuracy and the possibility of having numerically very stable recursion
relations which allows for large degrees of the polynomial. To ensure that
the Ginsparg–Wilson relation (for massless Dirac operator) is fulfilled to
a very high precision, the degree of Chebyshev polynomial n has to satisfy
the following condition:∣∣∣∣∣∣X − Pn,ε (A†A)A†APn,ε (A†A)X∣∣∣∣∣∣2/||X||2 < ξ , (8)

where ξ has to be a very small number, typically set to 10−16 to achieve
a compromise between good quality of approximation and its cost. The
degree of the polynomial depends on the condition number of the matrix
A†A, i.e. the ratio of the highest to the lowest eigenvalue. The lowest
eigenvalue can be a very small number and hence the condition number can
be prohibitively large, if one constructs the approximation on the interval
[ε, 1], with ε being the lowest eigenvalue. Fortunately, one can do much
better with the following method.
Eigenvalue deflation. To achieve a considerably smaller degree of Cheby-
shev polynomial, one should calculate a certain number4 of the lowest eigen-
values and eigenvectors of A†A and project them out of this matrix. In this
way, the Chebyshev approximation is constructed on the interval [ε, 1] with
ε equal to the highest of the computed eigenvalues. To illustrate how low
the lowest eigenvalues of the matrix A†A can go, we plotted in Fig. 1 the five
lowest eigenvalues and the highest eigenvalue for four gauge field ensembles,
each with 200 configurations. The general dependence that can be deduced

4 The exact number has to be found empirically and tends to increase with volume.
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from these plots is that increasing lattice spacing (decreasing β) moves the
spectrum down (eigenvalues in lattice units tend to become smaller) and
increases the probability of having very low eigenvalues.

Fig. 1. 5 lowest eigenvalues and the highest eigenvalue for various gauge field en-
sembles. The lattice spacing is a ≈ 0.084 fm for upper plots, a ≈ 0.066 fm for
bottom left and a ≈ 0.053 fm for bottom right plot.

HYP smearing of gauge fields. Another way to lower the condition num-
ber of the matrix A†A and thus the degree of the Chebyshev polynomial is
to perform one iteration of HYP smearing on the gauge fields. This tech-
nique was introduced by Hasenfratz and Knechtli [14] and allows to achieve
much better convergence of the solver due to improved chiral properties5. In
comparison with other link fattening methods (e.g. APE smearing), HYP
smearing is believed to preserve better the short-distance quantities, because
it mixes links from hypercubes attached only to the original link.
SUMR solver with adaptive precision and multiple mass capability.
Having constructed the Dirac operator (with Chebyshev approximation), to
find the propagator one has to solve the equation:

Dov(m)ψ = η , (9)
5 Hasenfratz and Knechtli [14] remark that fat links lead to an order of magnitude
improvement in convergence.
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where ψ is the propagator and η is the source — a vector whose choice
will be commented on below. To effectively solve this equation, one has to
choose the most appropriate solver. Chiarappa et al. [11] found that in
the case of (quenched) overlap and small volume (124 and 164), the most
effective solver is the chiral conjugate gradient algorithm, with the SUMR
solver just behind6. However, the former algorithm can only be used for
exact overlap operator, which means that the polynomial approximation
would lead to some corrections that would have to be explicitly calculated.
This makes the latter algorithm more attractive and we decided to use it. To
improve its performance, we have also used adaptive precision and multiple
masses. The former means that the degree of the Chebyshev polynomial is
adapted to what accuracy is actually needed in the present iteration step. In
practice, this means that when the solver is moving towards the requested
precision, the accuracy of approximation can be substantially decreased7,
which saves a factor of around 2 in inversion time. Multiple mass capability
of an algorithm means that for the cost of one inversion for the smallest
bare quark mass, one can obtain the solution also for heavier quark masses
for practically no additional cost. Since the dependence on the quark mass
is central in the present project, the use of a multiple mass variant of the
SUMR solver was absolutely essential.
Stochastic sources. Another important aspect of solving Eq. (9) is the
choice of the source η. The most obvious choice is the point source, which
means that the vector η is chosen to be 1 at one space-time point and
spin-color component and 0 otherwise. This leads to 12 inversions for each
gauge configuration, one per spin-color component. However, one can do
much better when it comes to statistical error on the pion mass and es-
pecially the pion decay constant, with the use of stochastic sources. To
keep the signal-to-noise ratio high enough, one has to use timeslice sources,
i.e. sources that are non-zero for all spatial points on a given time-slice and
for a given spin. This requires 4 inversions per gauge configuration, one per
spin component. Moreover, the noise can be further reduced by using the
one-end trick, introduced in [15]. A reasonable choice of stochastic sources
for mesonic correlators are the Z(2) sources — the random numbers are
of the form (±1 ± i)/

√
2. Empirical observations show that this method

reduces the statistical error on the pion decay constant by a factor of ap-
proximately 2 for the smallest quark masses that we consider, which means
that the number of inversions to achieve the same statistical error can be
even four times smaller than with point sources.

6 SUMR — Shifted Unitary Minimal Residual.
7 For example, if the degree of Chebyshev polynomial at the start of inversion is typ-
ically (for our parameters) of order 150–200, in the final iterations it can go down
typically to 30–40 with adaptive precision.
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3. Setup

To perform the scaling test of overlap fermions we fix the volume to
L ≈ 1.3 fm and use the following ensembles of dynamical Nf = 2 maximally
twisted mass8 [17, 18] configurations, generated by the European Twisted
Mass Collaboration (ETMC) [19,20]:

• β = 3.9, V = 163 × 32, a ≈ 0.084 fm, aµ = 0.004, κ = 0.160856,

• β = 4.05, V = 203 × 40, a ≈ 0.066 fm, aµ = 0.003, κ = 0.157010,

• β = 4.2, V = 243 × 48, a ≈ 0.053 fm, aµ = 0.002, κ = 0.154073.

The valence quarks are overlap fermions and the overlap quark mass was
chosen to vary from the unitary light quark mass up to the physical strange
quark mass. In total we have 20 quark masses, which allows for a precise
determination of the quark mass dependence of the pion mass and decay
constant.

In addition, we also perform a tree-level scaling test, for which we fix
Nm = 0.5 (which is the equivalent of fixing volume), where N is the number
of lattice points in spatial directions and go from N = 4 to N = 64. Thus,
the change in N introduces the scaling towards the continuum limit, which
corresponds to N →∞. The temporal extent was set to be 64 times larger
than the spatial extent for each value of N , which makes it possible to
extract the relevant quantities without any contaminations from the excited
states. For the details of this test and expressions for the tree-level quark
propagators and correlation functions, see [21, 22].

4. Results

4.1. Tree-level test

We investigated the relative (with reference to the continuum-limit value)
cut-off effects of three observables9: pseudoscalar (PS) correlation function
N3CPS at a fixed physical distance t/N = 4, pseudoscalar meson mass
NmPS and pseudoscalar decay constant NfPS. The results are presented
in Fig. 2. As expected, all observables show only O(a2) scaling violations,
since overlap fermions are O(a)-improved. We also observe that the smallest
lattice artifacts are observed for the pseudoscalar mass and the largest for
the correlation function itself.

8 Twisted mass (TM) Dirac operator is defined by: DTM = DW(m)1f + iµγ5τ
3, where:

m — untwisted quark mass, µ — twisted quark mass, 1f and τ3 act in flavour space.
For a review of twisted mass fermions, see [16].

9 All of the observables are multiplied by an appropriate power of N to make them
dimensionless.
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Fig. 2. The relative cutoff effects of the pseudoscalar correlator at a fixed physical
distance, pseudoscalar mass and decay constant.

4.2. The interacting case — matching the pion mass

In the interacting case, we are interested in the continuum limit scaling
of the pion decay constant for three reference values of the pion mass10 —
the sea quark pion mass, an intermediate mass r0mπ ≈ 1 and a heavy mass
(around the strange quark region) r0mπ ≈ 1.511.

The matching quark mass m̂ is defined, for each ensemble, by the con-
dition:

mov
π (m̂) = mTM

π (µ) , (10)

where mov
π and mTM

π are the mixed action and unitary pion masses, respec-
tively.

Fig. 3 shows the procedure of matching for the ensemble at β = 3.9.
The “overlap” curve shows the dependence of the pion mass on bare overlap
quark mass. As the plot indicates, when the overlap quark mass equals 0.007
(with an uncertainty of approx. 0.001), the TM pion and overlap pion have
equal masses, corresponding in infinite volume to ca 300 MeV. An analogous
procedure was applied for other ensembles.

One should add here a word of caution. For the situation of rather
small lattice extents of L ≈ 1.3 fm, the chiral zero-modes of the overlap
operator can play an important role. Note that since we use here a mixed
action approach, these zero-modes are not compensated for by the fermion

10 The pion mass and decay constant were obtained from the pseudoscalar correlation
function. Thus, pion means here the light pseudoscalar meson.

11 These two higher reference masses correspond to the partially quenched setup.
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determinant. The influence of the interplay between the finite box size, the
quark mass and the mixed action on the effects of the zero-modes for physical
observables will be discussed elsewhere.

Fig. 3. Matching mass for ensemble 163 × 32, a ≈ 0.084 fm (β = 3.9), aµ = 0.004,
κ = 0.160856. The matching procedure gives am̂ = 0.007(1).

4.3. Continuum limit scaling of the pion decay constant

Fig. 4 shows the continuum limit scaling of r0fπ for three choices of the
pion mass. The lower curve corresponds to the sea quark pion mass, i.e.
the bare overlap quark mass is set to the relevant m̂ for each ensemble. For

Fig. 4. Continuum limit scaling of the (overlap) pion decay constant for fixed
volume L ≈ 1.3 fm.
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the intermediate and upper curve we fix the pion mass r0mπ to 1.0 and 1.5,
respectively, i.e. we take such overlap quark mass that leads to the chosen
value of the pion mass for each ensemble.

We expect O(a2) scaling violations and hence we plot the decay constant
against the lattice spacing squared.

Indeed, for all three cases, we observe good scaling behaviour towards the
continuum limit. The fact that the unitarity violations, proper to a mixed
action approach, do not spoil the scaling of the pion decay constant is reas-
suring.

5. Conclusion and prospects

In this paper, we briefly reviewed the overlap discretization of the fermio-
nic action and the techniques we have used to deal with overlap fermions.
We presented the continuum limit scaling test of the pion decay constant at
tree-level and in the interacting case, using three values of the lattice spac-
ing coming from dynamical twisted mass configurations at roughly matched
physical box length of L ≈ 1.3 fm and with three reference values of the
pion mass.

We observe very good continuum limit scaling properties for all cases,
i.e. at tree-level and in the interacting case for pion masses corresponding
to light (with overlap quark mass leading to the same pion mass as the sea
quark), intermediate and somewhat heavier quarks.

In the next stage of the project, we plan to extend the scaling test to
other observables (e.g. the nucleon mass) and we aim at a detailed study
of the particular mixed action setup that we use, including fits of Partially
Quenched Chiral Perturbation Theory formulae. We will also investigate the
possibility of computing observables for which chiral symmetry is crucial.
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