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We apply chiral quark model with momentum dependent quark mass
to two kinds of nonperturbative objects. These are: photon Distribution
Amplitudes which we calculate up to twist-4 in tensor, vector and ax-
ial channels and pion–photon Transition Distribution Amplitudes together
with related form factors. Where possible we compare our results with
experimental data.
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1. Introduction

One of the biggest problems in particle physics is description of hadrons
in terms of the fundamental degrees of freedom — quarks and gluons. This
is, in fact, a non-perturbative problem and usually is formulated in terms of
various distribution functions, which appear in QCD factorization theorems.
The most famous example are Parton Distribution Functions which can be
measured in the inclusive lepton–hadron deep inelastic processes. They are,
however, one dimensional distributions only. Therefore, although they are
by now sufficient for description of various processes at high energies, they
simply give only limited information on the structure of hadrons.

On the other hand, one can study also hard exclusive processes, such
as deeply virtual Compton scattering for instance. Then the factorization
theorem states, in great simplicity, that the amplitude is given by the con-
volution

M = (soft)⊗ (hard) , (1)
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where hard is the part that can be calculated in perturbative QCD, while the
soft part is of non-perturbative nature. In the following we will be mainly
concentrated on the soft part. Although difficult to access experimentally,
they can be obtained either by lattice calculations or — as we shall see
— they can be estimated from theoretically justified low energy effective
models.

The soft part parametrizes hadronic matrix elements of certain non-
local operators on the light-cone. The simplest objects of this kind are
Distribution Amplitudes (DA) which correspond to hadron-to-vacuum ma-
trix elements of bi-local quark operators on the light-cone. In the case of
the leading twist DAs, i.e. the ones giving main contribution to the am-
plitude, they describe (in the infinite momentum frame) the probability for
a composite particle to dissociate into its constituents with given longitu-
dinal momentum fractions. Distribution Amplitudes have been successfully
used in theoretical description of hadronic form factors [1,2] for many years.
However, recent BaBar data for pion–photon transition form factor shows
that probably the standard factorization formulae do not apply [3, 4]. We
shall come back to the BaBar data in Section 4.

More general class of soft objects are Generalized Parton Distributions
(GPD). They correspond to non-diagonal in momenta matrix elements,
therefore they describe also the distributions of transverse momenta of the
partons inside the hadron. GPDs appear in description of deeply virtual
Compton scattering for instance, which is recently the subject of intensive
theoretical and experimental studies. For a review of this issue see e.g. [7].

One can still define more general class of the objects than GPDs — so-
called Transition Distribution Amplitudes (TDA). They parametrize matrix
elements which are non-diagonal in momenta and in physical states. Such a
family of objects was introduced for the first time in [13]. We shall discuss
this class further in Section 4.

As already remarked above there is very little experimental data con-
cerning the soft part of (1). On the other hand, it can be studied in effective
models. This is, however, nontrivial not only because of complex non-local
interactions at low energies. Even bigger problem is that in general effective
models do not inherit all symmetries of the underlying theory. Soft objects
considered here appear in the framework of QCD, therefore, they should
posses several important properties, for example Lorentz and gauge invari-
ance. They should also correctly reproduce quantum anomalies. The task to
cope with all the constrains in the effective models is, therefore, nontrivial.
We shall come back to this point in Section 2.
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2. Non-local chiral quark model

Let us consider the scattering process involving the simplest possible
hadronic state — the pion. On one hand, it is a bound state of quark–
anti-quark pair and the Goldstone boson of spontaneously broken chiral
symmetry on the other. Before we proceed let us briefly recall these very
important aspects of QCD.

Here and in the following we assume only two quarks u and d which
are massless, i.e. mu = md = 0. Then the Lagrangian of QCD is in-
variant under separate rotations of left- and right-handed spinors, that is
the symmetry group is SU (2)R ⊗ SU (2)L (the chiral symmetry group).
It is generated by the chiral charges satisfying SU (2) commutation rela-
tions QaL,R =

´
d3xψ†L,R (x) γ5

τa

2 ψL,R (x), where τa are Pauli matrices, ψ
denote iso-doublets. One can also define the combination of chiral fields
transforming as vector and axial-vector. Then the corresponding combi-
nation of L,R charges Qa = QaR + QaL and Qa5 = QaR − QaL generate the
SU (2)V ⊗ SU (2)A group1. The most direct consequence of this symmetry
would be a degeneracy of the states with different parity. However, such a
behavior is not seen in the hadronic spectrum — on the contrary, we ob-
serve huge mass differences between parity partners. The most natural way
of solving this discrepancy, is to postulate that although theory is chirally
invariant, the vacuum state is not. This phenomenon is known as sponta-
neous chiral symmetry breaking (SχSB). According to Goldstone theorem we
should then observe a triplet of massless pseudo-scalar particles — the Gold-
stone bosons. Indeed they can be apparently identified with pions (π+, π0,
π−), which are very light (mπ ≈ 140 MeV) in comparison to other hadrons
(e.g. mproton ≈ 1 GeV). Non-zero pion mass can be explained by finite
(although small) current masses of u, d quarks, which explicitly break chiral
symmetry from the very beginning.

Another important aspect of SχSB is the existence of the quark conden-
sates, i.e. the quantities

〈0 |q̄q| 0〉 ≡ 〈q̄q〉 = 〈q̄RqL〉+ 〈q̄LqR〉 , (2)

where q denotes either u or d quark field. It can be easily seen that the
nonzero value of the quark condensate breaks chiral symmetry of the vac-
uum. Consider the commutator[

Qa5, ψ̄γ5τ
bψ
]

= −δabψ̄ψ (3)

1 There is also similar global symmetry acting on the whole doublet. The axial sym-
metry U(1)A is, however, broken due to quantum anomaly.
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and its vacuum expectation value. If the right-hand side is nonzero it implies
that

Qa5 |0〉 6= 0 , (4)

what is exactly the SχSB condition. Therefore, the quark condensate can
be viewed as an order parameter measuring the breakdown of chiral symme-
try. Phenomenological value of the quark condensate is quite large 〈q̄q〉 ∼
(−250 MeV)3 (at renormalization scale about 1 GeV). Let us notice next
that in QCD 〈q̄q〉 is represented by a closed quark loop, i.e. it is propor-
tional to the trace of fermionic propagator 〈q̄q〉 ∼ Tr Ŝ (x, x), where the
trace is over Dirac and color indices. However, if this quantity is non-zero
there must be a non-slash term in the propagator — the mass term. This
dynamically (due to SχSB) generated mass is often referred to as constituent
quark mass. Notice that the quark condensate is a purely non-perturbative
quantity, since it is impossible to generate non-slash quark self energy by
interactions of vector bosons. Rather it must be created by some kind of
a scalar interactions. We shall come back to the issue of quark condensate
later in Section 3.

Let us now switch to description of the interactions between the pions
and quarks at low energies. It is clear from the above that such a model must
incorporate SχSB. It is convenient to start discussion by recalling the famous
Nambu–Jona-Lasinio (NJL) model. It is an effective theory of quarks with
four fermion couplings, appearing due to integrating out the gluonic degrees
of freedom from the QCD action. In the standard NJL model couplings with
more fermions are neglected. The Lagrange density for the simplest version
of the NJL model reads

LNJL = ψ̄i/∂ψ +
G

2

[(
ψ̄ψ
)2 +

(
ψ̄iγ5~τψ

)2]
, (5)

where ~τ =
(
τ1, τ2, τ3

)
are Pauli matrices and G is coupling constant. It can

be checked using some algebra and the relation

e−i(α·τ)γ5 = (cos |α| − iγ5α̂ · τ sin |α|) ,

where αi = |α| α̂i that Lagrangian (5) is indeed chirally invariant. The
most important feature of NJL model is that it incorporates the mechanism
leading to SχSB. One way to see this is to solve the corresponding lowest
order Dyson–Schwinger equation for the quark propagator. Denoting quark
self-energy by Σ (p) ≡ M one obtains the following consistency condition
(so-called gap equation)

M = −i8GNc

ˆ
d4k

(2π)4
1

k2 −M2
. (6)
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It has two solutions: M = 0 (for massless quarks) and M 6= 0. The latter
corresponds to the constituent quark mass which generates non-zero quark
condensate breaking the chiral symmetry of the vacuum. Notice that the
integral in (6) requires regularization. We shall discuss this later in this
section. For a review of NJL model see [6] for example.

Mesons can be easily introduced into the just described theory as aux-
iliary fields σ and πa — this can be done formally in the path integral
formalism and is called bosonization procedure. The new Lagrange density
reads

LNJL′ = ψ̄i/∂ψ + g ψ̄ [σ + iγ5~τ · ~π]ψ +
µ2

2
(
σ2 + ~π2

)
, (7)

where g2 = µ2G. Notice that the fields σ, πa are truly auxiliary — there are
no corresponding kinetic terms, moreover, they are composed fields what
can be immediately seen using equations of motion. NJL Lagrangian in the
form (7) can also be used to show that the ground state which minimizes
the energy is populated by the scalar quark condensate.

One can also look at the appearance of mesonic fields from a slightly
different point of view. Consider the following effective Lagrange density

L = ψ̄
(
i/∂ −M

)
ψ , (8)

which leads to Dirac equation for the quark with constituent quark massM .
However (8) is obviously not chirally invariant. In order to fix this deficiency
one has to introduce additional fields in the form

Uγ5 (x) = e
i
Fπ
~τ ·~π(x)γ5 ≈ 1 +

i

Fπ
γ5τ

aπa (x) + . . . , (9)

where Fπ ≈ 93 MeV is the pion weak decay constant, and couple them to
quarks,

L = ψ̄
(
i/∂ −MUγ5

)
ψ . (10)

Then the axial transformations of quark fields can be absorbed by pion
fields πa. The Lagrange density (10) is a starting point for our further con-
siderations and represents the simplest local chiral quark model. It describes
quarks having dynamically generated constituent mass M and interacting
with the external pion fields.

The effective theories just described are a non-renormalizable ones. The
regularization introduced in order to make the loop integrals finite cannot
be removed at the very end of the calculations and the observables depend
on its actual form. Moreover, it is somehow (but not straightforwardly)
related to the domain of applicability of the model. There are many ways
of regularizing the loop integrals. One could use for example simple four-
momentum cutoff or Pauli–Villars regularization. However, the point is that
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the regularization scheme should respect all symmetries of the underlying
theory, i.e. QCD. This is extremely important especially in the case of soft
matrix elements as stated in Section 1. Therefore, four-momentum cutoff
is excluded in the first place since it violates Lorentz invariance. Also very
often used Pauli–Villars regularization is not the best method, because in
order to get the results consistent with QCD one must keep it finite in some
diagrams and remove in others (connected with anomalous processes). On
the other hand, notice that in reality the constituent quark mass should not
be a constant — it should vanish for large quark momenta due to asymptotic
freedom. Therefore, in the following we assume that

M ≡M (k) = M0F
2 (k) , where F (k) −→

k→∞
0 , F (0) = 1 .

(11)
The constituent quark mass at zero momenta M0 is chosen to be about
M0 ∼ 350 MeV.

The interaction part of the effective action corresponding to (10) with
assumption (11) can be written in momentum space as

Sint = M0

ˆ
d4k d4l

(2π)8
ψ̄(k)F (k)Uγ5(k − l)F (l)ψ(l) . (12)

The explicit shape of F (k) cannot be obtained from the gap equation itself.
However, the action (12) was actually obtained in the instanton model of
the QCD vacuum, together with the expression for F (k) = Finst (k). Unfor-
tunately Finst (k) turns out to be a highly non-trivial function of Euclidean
momenta [8]. Therefore, instead of Finst (k) we shall use the following simple
formula in Minkowski space [19]

F (k) =
(

−Λ2
n

k2 − Λ2
n + iε

)n
, (13)

which reproduces Finst quite well when continued to Euclidean space. The
parameter n is responsible for the actual shape of F (k), therefore we can
investigate the sensitivity of calculated quantities to the form of the cutoff
function. The cutoff parameter Λn is adjusted in such a way that pion decay
constant Fπ given by the formula [21]

F 2
π =

Nc

4π2

∞̂

0

dk2
E k

2
E

M2 (kE)− k2
EM (kE)M ′ (kE) + k4

EM
′ (kE)2(

k2
E +M2 (kE)

)2 (14)

is equal to the experimental value. In the above equation kE corresponds to
Euclidean momentum, while the prime to differentiation with respect to k2

E.
For example for constituent quark mass M0 = 350 MeV and n = 1 (14)
gives Λ1 = 836 MeV.
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Although momentum dependent quark mass seems to be the most nat-
ural regulator it introduces a serious difficulty. Namely Ward–Takahashi
identities are not satisfied in such a model. It can be most easily seen by
considering a divergence (in momentum space) of the vector current and
applying Dirac equation. This violation turns out to be not very large, it
can, however, spoil some important properties of soft matrix elements, like
correct normalization for example. In order to fix this problem the stan-
dard vector γµ and axial γµγ5 vertices have to be modified by adding new
non-local terms. The problem is, however, that such a modification is not
unique [21] (Ward identities fix only longitudinal part of the vertices). In
this work we use the following modified vector and axial vertices:

Γµ (k, p) = γµ − kµ + pµ

k2 − p2
(M (k)−M (p)) , (15)

Γµ5 (k, p) = γµγ5 +
pµ − kµ

(p− k)2
(M (k) +M (p)) γ5 , (16)

reproducing Word–Takahashi identities. The vector vertex does not intro-
duce additional singularities, while the axial one has a pole corresponding to
the massless pion as it should be [20]. Let us remark that Eq. (14) express-
ing Fπ is determined unambiguously since it involves only the derivative of
the axial current.

At the end of this section we remark that any non-local (i.e. with mo-
mentum dependent constituent quark mass M (k)) chiral quark model is
determined by specifying both the M (k) and the precise form of all ver-
tices.

3. Photon Distribution Amplitudes

As already remarked in the Introduction the simplest soft objects are
Distribution Amplitudes. In this section we present how the non-local chiral
quark model can be applied to this class. However, instead of considering the
hadronic DA we shall discuss less known photon DA. This is possible due to
the fact that — besides standard perturbative part — photons possess also
hadronic component. This fact is very well known from photoproduction
processes, where photon structure function has to be taken into account
(so-called resolved photoproduction).

Photon DAs appear for example in the description of vector mesons
radiative decays. To be more specific consider for instance the process
D0∗ (q + p)→ D0 (p)+γ (q) (Fig. 1 (a)). Using OPE one can then write the
amplitude as products of factors that are divergent on the light-cone and
finite photon-to-vacuum matrix elements. The latter can be identified with
the photon DA as we shall see.
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Before we give the more precise definition of the photon DA we should re-
call useful kinematical variables. One defines two null vectors n=(1, 0, 0,−1)
and ñ = (1, 0, 0, 1). Then any four-vector vµ can be decomposed into “plus”,
“minus” and transverse components

vµ = v+ ñ
µ

2
+ v−

nµ

2
+ vµT . (17)

Photon Distribution Amplitude is defined as a Fourier transform of the
photon-to-vacuum matrix element of the non-local quark operator on the
light-cone. In general this can be written as

ˆ
dλ

2π
ei(2u−1)λP+ 〈

0
∣∣ψ (λn)Oψ (−λn)

∣∣ γ (P )
〉
∼ FO

(
P 2
)

×
{
Otwist−2φ

twist−2
O

(
u, P 2

)
+Otwist−3φ

twist−3
O

(
u, P 2

)
+. . .

}
, (18)

where O = {σµν , γµ, γµγ5} corresponds to different tensor nature of bilocal
operators, Otwist−2, Otwist−3, . . . denote appropriate tensor structures which
are multiplied by photon DA φO of given kinematical twist. Notice that we
do not assume that the photon is on-shell. Then the decay constants FO
depend on photon virtuality P 2 and become a kind of “form factors” — we
shall use this terminology in the following. For more precise definitions of
the photon DAs refer to [9, 10,17].

(a)

D0∗ D0

γ(P )DA

(b)

γ(P )ψ̄Oψ̄

nonlocal
current

Fig. 1. (a) Bag diagram for the radiative D0∗ vector meson decay. The lower blob
corresponds to photon Distribution Amplitude. (b) Simple quark loop correspond-
ing to photon DA in the quark model. Double external line represents bilocal quark
operator on the light-cone.

Using the non-local chiral quark model described in Section 2 we cal-
culated photon DAs up to twist-4 in tensor, vector and axial channels [12]
in one loop approximation (Fig. 1 (b)). Our results are analytical up to
the solution of a certain polynomial equation. Let us briefly summarize
our results. For real photon the leading DA is the twist-2 tensor amplitude
φσµν ≡ φT (Fig. 2 (a)) corresponding to σµν structure. We find it is almost
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flat and non-vanishing in the end-points. Also the sensitivity to the n pa-
rameter, i.e. to the shape of F (k) is rather small. In the vector channel
one has to subtract the infinite, perturbative part when calculating the cor-
responding matrix element. Then we find in particular that leading twist
vector DA vanishes in the end-points. It can be easily shown on general
grounds that the vector “form factor” Fγµ

(
P 2
)
≡ FV

(
P 2
)
should be zero

for the real photon. This property is maintained in our model only when
we use modified vector vertex (Fig. 2 (b)), as described in Section 2. Higher
twist amplitudes turn out to be rather strongly model dependent. Moreover,
some of them contain Dirac delta functions in the end points, they should
be therefore viewed rather as the generalized functions. Similar calculation
was previously done in Ref. [10] and differs from ours in some points.

0.2 0.4 0.6 0.8 1.0
u

0.8

1.0

1.2

1.4

ΦT HuL

M � 400 MeV

M � 225 MeV

M � 350 MeV

(a)

0.2 0.4 0.6 0.8 1.0
-P

2AGeV
2E

-0.2

-0.1

0.1

0.2

0.3

FVIP2M

non-local vertex

local vertex

(b)

Fig. 2. (a) Twist-2 tensor photon Distribution Amplitude for n = 1 and several
values of the constituent quark massM0. (b) Vector form factor forM0 = 350 MeV,
n = 1, calculated using naive vector vertex γµ (dashed line) and the modified one
Γµ (solid). Notice that the modified vertex assures that FV vanishes for real photon
as required by QED.

The left hand side of the definition (18) is dimensionfull, therefore we
should have several quantities that set up the characteristic mass scale for
photon DAs. Among others, it is a quark condensate, already discussed in
Section 2. The non-local chiral quark model with (13) allows to obtain the
following “analytical” expression for the quark condensate

〈q̄q〉 = −NcM
2
0Λ

2
n

4π2

4n+1∑
i=1

fiη
2n
i (1 + ηi) ln (1 + ηi) , (19)

where the complex numbers ηi are numerical solutions to the equation
z4n+1 + z4n− (M0/Λn)2 = 0, while fi are defined as fi =

∏4n+1
k 6=i (ηi − ηk)−1.

For example for M0 = 350 MeV and n = 1 we get 〈q̄q〉 = (−253 MeV)3. It
turns out that in general the values of 〈q̄q〉 rather strongly depend on model
parameters.
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4. Pion–photon Transition Distribution Amplitudes

In this section we switch to more involved applications of the non-local
chiral quark model. Transition Distribution Amplitudes, apart from be-
ing interesting on their own, can serve as a demanding testing ground for
the model. The reason is that they involve diagrams responsible for axial
anomaly. We shall come back to this point later in this section.

Transition Distribution Amplitudes were originally introduced in order
to describe hadron–antihadron annihilation into two photons, i.e. the pro-
cess HH̄ → γ∗γ or backward virtual Compton scattering γ∗H → γH [13].
The amplitudes for these processes can be described in QCD analogously to
the reactions HH̄ → γ∗ and γ∗H → H, respectively, with the restriction
that Distribution Amplitudes for H should be replaced by a new object —
Transition Distribution Amplitudes (Fig. 3 (a)). First estimates were done
in Refs. [14–17].

(a)

π−(q1)

π+(P1)
TDA

u d̄

γ(P2)

γ∗(q2)
e−

e−

(b)

π+(P1)

ψ̄Oψ

γ(P2)

nonlocal
currents

Fig. 3. (a) The bag diagram for the process π+π− → γ∗γ. The lower bag represents
Transition Distribution Amplitude while the upper corresponds to the hard process.
(b) The quark loop corresponding to TDA, the bilocal operator is assumed to “live”
on the light-cone. In order to recover correct normalization both vertices have to
be non-local.

Before we give the general definition of TDAs we should define relevant
kinematics. We consider pion with momentum Pµ1 transforming into the
photon with momentum Pµ2 . We define the momentum transfer as qµ =
Pµ2 − P

µ
1 and the momentum transfer squared t = q2 which is assumed to

be small. Using the average momentum pµ = 1
2 (Pµ1 + Pµ2 ) we define so-

called skewedness ξ = −q+/2p+, which is a standard variable in the GPDs
formalism. We consider chiral limit and real photons, i.e. P 2

1 = P 2
2 = 0.

The general definition of leading twist TDAs can be written as
ˆ
dλ

2π
eiλXp

+〈
γ (P2, ε)

∣∣ψ (λn)Oψ (−λn)
∣∣π+ (P1)

〉
=Otwist−2D (X, ξ, t)+. . . ,

(20)
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where in practice O = {γµ, γµγ5}. Dots stand for the other terms that can
appear and are not related to TDA under consideration. For example in
the axial channel, i.e. for O = γµγ5, pion DA accompanied by massless
pole appears on the right-hand side. This reflects the fact that the axial
current couples to a pion directly. In the following we denote vector TDA as
V (X, ξ, t) (i.e. for O = γµ) and the axial TDA as A (X, ξ, t) (for O = γµγ5).

There is very important property that TDAs should posses, namely so-
called polynomiality

1ˆ

−1

dX XnD (X, ξ, t) = an (t) ξn + an−1 (t) ξn−1 + . . .+ a0 (t) , (21)

which follows simply from Lorentz invariance. In principle the zeroth mo-
ment is related to the corresponding form factor. Second very important
constraint is the normalization of the vector TDA, which is fixed by the
axial anomaly

1ˆ

−1

dX V (X, ξ, t = 0) =
1

2π2
. (22)

Above condition is model independent and can be derived using Ward–
Takahashi identities that relate the two-photon matrix elements of the axial
and pseudoscalar currents. The latter can be then identified with our matrix
element (20) with O = γµ. There is no similar normalization condition for
axial TDA. However, in the local models, i.e. with M (k) ≡M it turns out
that

1ˆ

−1

dX Alocal (X, ξ, t = 0) =

1ˆ

−1

dX V (X, ξ, t = 0) =
1

2π2
. (23)

In the quark model, calculation of the TDAs reduces to performing quark
loop shown in Fig. 3 (b). We present a typical results in Fig. 4 [18]. Notice
first that curves obtained in non-local model are much more smooth then
the ones obtained in the local model. Next, we find that the normalization
condition (22) is recovered only when light-cone bilocal current in (20) is
also modified according to (15). At the same time the normalization of
the axial TDA is much lower than (23). This result is important because
zeroth moments of vector and axial TDAs are directly related to the vector
and axial form factors which can be estimated experimentally. To be more
precise the relation is

1ˆ

−1

dX

{
V (X, ξ, t)
A (X, ξ, t)

= 2
√

2Fπ

{
FχV (t)
FχA (t)

, (24)
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-1.0 -0.5 0.5 1.0
X

-0.05
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0.10

VHXL
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local part of the vertices

full non-local model

(a)

-1.0 -0.5 0.5 1.0
X

-0.02

0.02

0.04

0.06

0.08

AHXL

local model

non-local part of the vertices

local part of the vertices

full non-local model

(b)

Fig. 4. (a) Vector Transition Distribution Amplitude for M = 350 MeV, n = 1,
t = −0.1 GeV2 and ξ = 0.5. Solid line corresponds to the full non-local model with
non-local vertices and is a sum of the dashed line and the dotted. Dash-dotted
line was obtained in local model, i.e. with M (k) ≡ M . (b) The same for the
axial TDA. Here the addition coming from the non-local part of the vertices gives
negative contribution.

where the superscript χ denotes that these quantities are defined in the
chiral limit. The experimental values for t = 0 are (PDG)

F exp
V (0) = 0.017± 0.008 , (25)
F exp
A (0) = 0.0115± 0.0005 , (26)

(FA (0) /FV (0))exp = 0.7+0.6
−0.2 . (27)

On the other hand, the normalization (22) gives (model independent)

FχV (0) ≈ 0.027 , (28)

what overshoots (25) more than one standard deviation. The results for
axial form factor are model dependent. For reasonable model parameters
we obtain:

M [MeV] n FχA (0) FχA (0) /FχV (0)

225 1 0.0217 0.80
350 1 0.0168 0.62
350 5 0.0163 0.60
400 1 0.0161 0.60
400 5 0.0152 0.56

We see that indeed the assumption of non-locality (11) lowers the value of
FχA towards the experimental data.

Moreover, FχV is directly related to so-called pion–photon transition form
factor Fπγ via the relation

Fπγ (t) =
√

2FχV (t) . (29)
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This quantity describes the pion decay π0 → γ∗γ process and was measured
by CLEO [23], CELLO [22] and recently by BaBar [24] Collaborations. We
compare our predictions to the experimental ones in Fig. 5. There is, how-
ever, important remark in order. Notice, that by definition TDAs are sensi-
ble only for small momentum transfers t, the precise range of application is,
however, not known. Therefore, as an example we have chosen arbitrarily
the range of 0–8 GeV2. It is worth noting at this point that the new BaBar
data are in disagreement with the standard QCD factorization formula, as
it was already remarked in Introduction. In QCD, the pion–photon form
factor can be described using pion DA and some perturbatively calculable
factor, which leads to the certain asymptotic form. New BaBar data cover
the range of 0–40 GeV2 (in Fig. 5 we retained only the relevant low momen-
tum data) and cross the asymptotic line already at about 10 GeV2. One
way to resolve this discrepancy is to note that pion DA which vanishes at the
end-points was assumed in the standard factorization formula. In Refs. [3,4]
the authors study the flat pion DA in order to describe the new BaBar data
(but see also [5]).
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Fig. 5. The experimental data for pion–photon transition form factor Fπγ times
momentum transfer t. The shaded area represents the predictions from the non-
local chiral quark model predictions for sensible model parameters. We get the
best description of the low momentum transfer data for M0 ∼ 300 MeV.

5. Summary

Let us briefly summarize our presentation. In the beginning we re-
called chiral quark models, starting from widely known Nambu–Jona-Lasinio
model. We argued that spontaneous chiral symmetry breaking is their main
ingredient. We also showed that they lead to nonzero quark condensates
and in turn to dynamically generated constituent quark mass, which in gen-
eral can depend on momentum. Next, we used a simple ansatz for this
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dependence and applied the model to two low-energy objects: photon Dis-
tribution Amplitude and photon–pion Transition Distribution Amplitude.
We find that they fulfill most symmetries required by QCD, provided we
modify the vector and axial vertices in such a way that relevant currents
are conserved. We find also that form factors which are calculated using
Transition Distribution Amplitudes are realistic when compared to the ex-
perimental data.

At the end, we draw attention to important issues which was not cov-
ered by this presentation. First of all, in QCD all the low-energy quantities
depend on some factorization scale µ and are a subject for corresponding
QCD evolution. On the other hand, within effective models they are ob-
tained at some fixed µ, which is in fact unknown (although can be roughly
estimated). Therefore, before one makes a real use of them, the evolution
has to be applied. The second remark is rather a technical one and concerns
the cutoff Λn parameter in (13). One should not confuse it with the scale µ
of the model, as discussed in [19].

Based on work done in collaboration with Michał Praszałowicz. The
Author acknowledges support the Polish–German cooperation agreement
between Polish Academy of Sciences and DFG.
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