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We start from recalling the limited and descriptive character of our
theories, and point out the existence of a tension between relativity and
quantum physics. It is then argued that some quantum features of the
Standard Model may be understood when the concept of arena used for
the description of physical processes is changed from relativistic ‘space-
time’ to nonrelativistic ‘phase-space + time’. The phase-space form x2+p2,
which constitutes a natural generalization of 3D invariants x2 and p2, is
linearized á la Dirac, with xk and pj satisfying standard commutation rela-
tions. This leads to a quantum-level structure related to phase space, and
to the appearance of new quantum numbers. The latter are identified with
internal quantum numbers characterizing the structure of a single quark–
lepton generation. The approach provides a preonless interpretation of the
Harari–Shupe model, and leads both to a different view on the concept of
quark mass and to the emergence of quark-confining strings.

PACS numbers: 02.40.–k, 03.65.–w, 04.60.–m, 11.30.–j

1. Introduction

The Standard Model (SM) gives us a successful description of a plethora
of experimental results. Yet, many questions exist for which it provides no
answer. For example, we do not know the origin of the U(1)⊗SU(2)L⊗ SU(3)
gauge group structure, we are ignorant of the mechanism leading to the
emergence of SM parameters (masses, mixing angles), etc. Clearly, in order
to find answers to such questions one must go beyond SM itself. Going
outside the framework of a given theory leaves us in a totally unchartered
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territory, however. Which way should one choose there, which assumptions
accept? If we do not have a solid guiding principle, we are bound to go
astray already after the first few steps ...

2. Physics and reality

Thirty years ago Werner Heisenberg, speaking about the development of
particle theory, said [1]:

I believe that certain erroneous developments in particle theory
— and I am afraid that such developments do exist — are caused
by a misconception by some physicists that it is possible to avoid
philosophical arguments altogether. Starting with poor philoso-
phy, they pose the wrong questions.

Thus, it is appropriate to start with a brief discussion of the philosophical
status of our theories. In particular, one should realize that we all have
the tendency to commit a philosophical error known under the name of
the fallacy of misplaced concreteness (term introduced by A.N. Whitehead).
We commit this error when we mistake a theory for a physical or ‘concrete’
reality. In fact, the actual relationship between our theories and physical
reality we want to describe is more like that schematically shown in Fig. 1.
In other words, a physical theory provides only a description of some aspects
of reality. Accordingly, theories must not be identified with the latter. In
principle, we know this well. Yet, we all tend to fall into the trap. For
example, if we think of absolute time as a property of physical reality, we
are prevented from moving on to a different description — that provided by
special relativity, in which ‘time’ ceases to be absolute and changes when
the frame used for the description of phenomena is altered.

Fig. 1. Physical theories and reality.
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Since all physical theories have been constructed to provide descriptions
of certain aspects of reality only, they should all have limited domains of
applicability. Going outside these domains leads to artifacts. As a second
example, therefore, let us think of quantum physics as identical to physical
reality. This may lead to such an idea as the Many Worlds theory, which
may be regarded as an artifact. Unfortunately, we have no means of knowing
in advance where the applicability of theory ends. This must be checked
experimentally.

The above discussion demonstrates that when trying to describe physical
reality one should not be bound too strongly by contemporary theories.
Their assumptions are not harmful in their domain of applicability, but —
essentially by definition — are harmful beyond it. Thus, it is important to
analyze the assumptions themselves and judge which ones seem to be really
sound, much sounder than the other ones, and which ones may be omitted
as not needed for the intended goal.

At present, one of our goals is to see if the basic symmetries of the
Standard Model could be derived from some single principle. In order to
approach that question, let us first note that SM belongs to the quantum
description of reality. Yet, other aspects of physical reality may be described
in a classical way. Since both descriptions deal with aspects of the same
reality (Fig. 1), the two descriptions must be related. Thus, it is possible
that classical considerations might shed some light on the quantum aspects
of SM.

This anticipated connection between the quantum and classical descrip-
tions of Nature may be viewed upon in various ways. One may accept
a reductionist-like attitude in which the concepts of quantum physics (e.g.
quantum numbers of elementary particles) are thought of as more funda-
mental than those of classical physics. According to this view, one should
start with quantum concepts and somehow build classical concepts (such
as geometry) out of them. The whole idea may be called the philosophy
of ‘emergent space’ and was succinctly expressed by J.A. Wheeler, as ‘Day
One: Quantum Principle, Day Two: Geometry’.

A somewhat more symmetric (and presumably more holistic) attitude
may be found in these words of Penrose [2]: ‘I do not believe that a real
understanding of the nature of elementary particles can ever be achieved
without a simultaneous deeper understanding of the nature of spacetime’. At
least two things are being said here: first, that the observed properties of
elementary particles (quantum numbers, masses, etc.) are related to the
properties of the macroscopic classical arena on which their time evolution
is described, and second, that the understanding of the geometrical and
quantum aspects of Nature should be deepened simultaneously.



528 P. Żenczykowski

The view that the properties of elementary particles and the properties
of macroscopic arena are closely related was recently studied from a novel
angle in a series of papers [3–5]. The general idea developed in these papers
is that the standard description of physical reality — in which, roughly
speaking, one identifies the macroscopic arena with the ordinary 3D space
— may (and should) be replaced by a different description, in which the
arena is identified with phase space. In the following, we shall first argue
step by step that this seems to be the right thing to do, and then see to
what consequences such an assumption leads.

3. Quantum numbers of elementary particles and relativity

According to the Standard Model, there are three generations of funda-
mental elementary fermions, each generation composed of two leptons and
two triplets of quarks. The particles of a given generation differ in their
properties, with the differences corresponding to different eigenvalues of the
internal quantum numbers of (weak) isospin and color. Both, the origin of
the structure of a single generation and why it is repeated three times are
unknown.

The name ‘internal’ quantum numbers was introduced to differentiate
them from ‘spatial’ quantum numbers, which are closely related to the prop-
erties of macroscopic 3D space, while the internal ones are not. The spatial
quantum numbers are: spin J — related to ordinary 3D rotations, parity P
— related to 3D reflections, and charge-conjugation parity C — related to
time reflection (recall the Stückelberg–Feynman interpretation of antipar-
ticles as particles moving ‘backward’ in time). We observe that all these
spatial quantum numbers are nonrelativistic in origin. In particular, we
stress that the emergence of antiparticles is not a relativistic phenomenon
as the Dirac equation might suggest: the antiparticles appear also when
one linearizes the nonrelativistic Schrödinger equation [6], and are related
to complex conjugation (as is time reversal).

In view of the nonrelativistic origin of all spatial quantum numbers,
it seems, therefore, natural to suspect that the minimal extension of the
concept of arena needed for a similar understanding of internal quantum
numbers should be nonrelativistic as well. In other words, while for the
description of classical relativistic motions one certainly needs the theory of
relativity, the latter is presumably not needed for the description of particle
quantum numbers. This is in perfect agreement with our previous discussion
concerning the descriptive character of our theories.

More precisely, one should realize that Nature is not four-dimensional.
It is only a description of its certain aspects that may be formulated in terms
of the 4D Minkowskian space. Indeed, it is known that the connection
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between space and time is more subtle than the standard form of special
relativity suggests. This standard form emerges when distant clocks are
synchronized according to the Einstein radiolocation prescription, in which
the one-way velocity of light is assumed equal to c. Yet, the latter as-
sumption cannot be checked experimentally (as opposed to two-way velocity
of light which is experimentally equal to c), as this would require the exis-
tence of already synchronized distant clocks. Thus, different synchronization
prescriptions are possible, including even a description in which absolute si-
multaneity reappears [7]. In other words, special relativity is a clock gauge
theory, with a fixed symmetric gauge (i.e. the velocity of light ‘to’ assumed
equal to the velocity of light ‘from’) adopted by Einstein for aesthetic and
simplicity reasons. It is true that this symmetric gauge simplifies the de-
scription very much. Clearly, however, a fixed gauge should not be mistaken
for physical reality.

Returning to the quantum issues, there exists a known tension between
quantum physics and the theory of relativity. And although the relativistic
field theory does unite special relativity and quantum physics, this ‘mar-
riage’ of quantum and relativistic ideas is — in the opinion of many theo-
rists — somewhat uneasy [8]. The actual wording may take various forms,
e.g. ‘The construction of a fully objective theory of state-vector reduction
which is consistent with the spirit of relativity is a profound challenge, since
“simultaneity” is a concept (...) foreign to relativity’ [9]. Furthermore, the
existence of ‘nonlocality without signaling’, which creates a conflict between
quantum physics and the spirit of relativity, has been experimentally verified
over the distances of the order of a hundred km (e.g. see references in [10]).
This quantum concept of ‘nonlocality without signaling’ is completely for-
eign to relativity. In retrospect, the concept of locality on which the theory
of relativity is founded should be, therefore, seen as an idealization of cer-
tain aspects of Nature. The tension existing between quantum physics and
relativity is a symptom of the fact that we are dealing with descriptions, and
not with physical reality, i.e. that our theories are incomplete idealizations
(see Fig. 1). Or, in the words of Gisin [10]: ‘...who can doubt that relativity
is incomplete? And likewise who can doubt that quantum mechanics is in-
complete? Indeed, these are two scientific theories and Science is nowhere
near its end ...’.

We conclude that in an approach that aims at understanding internal
quantum numbers it is well justified to dismiss the use of relativistic con-
cepts, at least at the beginning. In other words, the word ‘spacetime’ in
the quotation from Penrose might be without much harm replaced with
‘space+time’. Yet, if the internal quantum numbers are to be connected
with the properties of the macroscopic ‘space’, the ordinary 3D space clearly
has to be somehow extended into a broader ‘arena’.



530 P. Żenczykowski

4. Phase space as an arena

The existence of a relation between particle properties (e.g. mass), and
the ‘emergent space’ was of great concern already to Max Born. Over half
a century ago he wrote [11]: ‘I think that the assumption of the observability
of the 4-dimensional distance of two events inside atomic dimensions (no
clocks or measuring rods) is an extrapolation ...’. Then, he continued with
the discussion of a difference between the position and momentum spaces for
the observed particles. First, he noted that different particles correspond to
different discrete values of massm, thus making p2 observable (via p2 = m2).
Then, he stressed that the corresponding invariant in position space (with
x2 of atomic size) seems to be ‘no observable at all’.

And yet, as he pointed out, the laws of nature such as

ẋk =
∂H

∂pk
, ṗk = − ∂H

∂xk
,

[xk, pl] = i~δkl ,
Lkl = xkpl − xlpk , (1)

are invariant under ‘reciprocity’ transformations:

xk → pk , pk → −xk . (2)

Noting that the reciprocity symmetry does not seem to apply to elementary
particles, he concluded: ‘This lack of symmetry seems to me very strange
and rather improbable’.

The concept of reciprocity suggests the introduction of a new constant
of dimension (GeV/c)/cm, so that all positions and momenta be of the same
dimension and may be transformed into one another. This leads to the idea
that it is the nonrelativistic phase space which might be considered as the
macroscopic arena of physical events. Hence, instead of a nonrelativistic
‘space+time’ picture, we might use a ‘phase-space+time’ description (see
Fig. 1).

We observe that such an extension of the concept of arena agrees well with
the classical Hamiltonian description, inwhich positions andmomenta are in-
dependent variables.With quantum mechanics ‘living in phase space’ [12],
identifying the arena with phase space seems to be an even more natural
thing to do (see also [13]). We also note that the above proposal constitutes
an absolutely minimal generalization of the standard view of position space
as the arena. In particular, no additional hidden dimensions are introduced
in this way.

With the macroscopic arena thus enlarged with respect to the standard
3D arena of positions, one expects the emergence of additional quantum
numbers. Obviously, if one accepts the philosophy of ‘emergent space’, the
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arrow of implications should be ultimately reversed. Then, one should start
from the quantum numbers of elementary particles and somehow build the
‘Emergent Phase Space’.

5. Phase space quantization and the Standard Model

The simplest and fully symmetric joint treatment of the basic O(3) invari-
ants in position and momentum spaces is obtained by adding them together:

x2 + p2 . (3)

It clearly includes Born’s reciprocity and leads to O(6).
In the quantum case, x and p are operators satisfying standard commu-

tation relations. Thus, we are dealing with a case of noncommuting geometry
in six dimensions, in which three dimensions are interpreted as positions, and
the remaining three dimensions — as momenta. As is well known from the
case of the 3D harmonic oscillator, if one admits only those O(6) transforma-
tions which leave the commutation relations invariant, the O(6) symmetry
group is reduced to U(1) ⊗ SU(3). Here, the U(1) factor describes Born’s
reciprocity transformations and their squares, i.e. the 3D reflections, while
the SU(3) factor takes care of standard rotations in particular.

The appearance of the U(1)⊗ SU(3) group and the presence of the same
group in the Standard Model raises the question whether the internal sym-
metry group of the latter is related to phase space symmetries. A direct
confirmation of this suggestion would require the introduction of a connec-
tion to the SM gauge prescription. Yet, the latter may appear only after or
alongside the emergence of space. Consequently, at present it lies beyond our
reach. Still, a different corroboration of our proposal may be obtained: in
the following, we will show that the structure of quantum numbers obtained
at the deeper level of the phase-space approach parallels that observed in
the real world.

In order to reach this possibly deeper and more quantum-like level of the
phase-space approach, let us note that in the 3D case the Dirac linearization
procedure, i.e.

p2 = (p · σ)(p · σ) , (4)
leads to the appearance of Pauli matrices σ, i.e. to the concept of spin.
Thus, linearization leads to the emergence of discrete structures and related
quantum numbers, i.e. it provides a way of quantization. Let us, therefore,
linearize x2 + p2 à la Dirac and consider A · p+B · x with anticommuting
matrices Ak and Bl (k, l = 1, 2, 3). We use the following representation

Ak = σk ⊗ σ0 ⊗ σ1 ,

Bk = σ0 ⊗ σk ⊗ σ2 ,

B7 = σ0 ⊗ σ0 ⊗ σ3 , (5)
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(B7 is the seventh anticommuting element of the Clifford algebra in ques-
tion). One finds

Rtot≡(A · p+B · x)(A · p+B · x)=(p2+x2)+
3∑
1

σk ⊗ σk ⊗ σ3 . (6)

The first term on the r.h.s., i.e. R ≡ p2 + x2, is standard: it emerges
because elements Ak and Bl anticommute. The second term, i.e. Rσ ≡∑3

1 σk ⊗ σk ⊗ σ3, appears because xk and pk do not commute. In order
to simplify our expressions and remove the rightmost σ3 factor in Rσ, we
multiply both sides of (6) by B7 and introduce operator

Y ≡ 1
3
RσB7 =

1
3

3∑
1

σk ⊗ σk ⊗ σ0 ≡
3∑
1

Yk . (7)

Since operators Yk commute among themselves, they may be simultaneously
diagonalized. One then gets the pattern shown in Table I (since the matrices
are 8× 8, this pattern is obtained twice).

TABLE I

Decomposition of the eigenvalue of Y into eigenvalues of Yk.

Color 0 1 2 3
Y −1 + 1

3 + 1
3 + 1

3

Y1 − 1
3 − 1

3 + 1
3 + 1

3

Y2 − 1
3 + 1

3 − 1
3 + 1

3

Y3 − 1
3 + 1

3 + 1
3 − 1

3

The generators of SO(6) are constructed as antisymmetric bilinears of
Ak, Bl. In particular, the generator of standard rotation has the explicit
form

Sk = 1
2 (σk ⊗ σ0 + σ0 ⊗ σk)⊗ σ0 (8)

and corresponds to simultaneous (the same size and sense) rotations in mo-
mentum and position subspaces. Introducing I3 = B7/2, we observe that

[Sk, Y ] = [Sk, I3] = 0 . (9)

Thus, Y and I3 are invariant under standard 3D rotations. Likewise, they are
also invariant under 3D reflections. Hence, Y and I3 constitute candidates
for internal quantum numbers. In [4] it was conjectured that electric charge
Q is proportional to operator RtotB7, evaluated for the lowest level of R:

Q =
1
6

(Rlowest +Rσ)B7 = I3 +
Y

2
, (10)
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with Rlowest = (p2 + x2)lowest = 3, I3 = ±1/2 being (weak) isospin, and Y
— (weak) hypercharge. The above equation yields the charges of all eight
leptons and quarks from a single SM generation (cf. Table I) and is known
as the Gell-Mann–Nishijima relation. In our phase-space approach this law
of nature is derived as a property of phase space.

There is one unexpected byproduct of the above scheme. Namely, one
may consider partners of I3, i.e. Ik = σ0 ⊗ σ0 ⊗ σk/2 for k = 1, 2. It is
then straightforward to check that the SU(2) raising and lowering operators
I1 ± i I2 — which connect sectors of different I3 — commute with ordi-
nary rotations, but do not commute with 3D reflection. While the pattern
of parity violation present in SM is clearly more complicated than this, it
is nevertheless interesting that the lack of invariance under 3D reflections
appears automatically and in the roughly right place.

6. Harari–Shupe rishons

The way in which hypercharge Y is built up of ‘partial hypercharges’
Yk (shown in Table I), or rather an equivalent of this scheme, was proposed
thirty years ago by Harari and Shupe [14]. The Harari–Shupe model de-
scribes the structure of a single SM generation with the help of a composite
(i.e. preon) model. It builds all eight fermions of a single generation from
only two spin-1/2 ‘rishons’ V and T of charges 0 and +1/3, respectively,
(see Table II).

TABLE II

Rishon structure of leptons and quarks with isospin I3 = +1/2.

νe uR uG uB e+ d̄R d̄G d̄B

V V V V TT TV T TTV TTT TV V V TV V V T

Q 0 + 2
3 + 2

3 + 2
3 +1 + 1

3 + 1
3 + 1

3

Y −1 + 1
3 + 1

3 + 1
3 +1 − 1

3 − 1
3 − 1

3

The rishon model is algebraically very economical, yet it poses several
problems. These include, among others: the issue of preon confinement
at extremely small distance scales (when confronted with the uncertainty
principle), the apparent absence of spin-3/2 fundamental particles, and the
lack of explanation why the ordering of three rishons leads to SU(3). (Note
also that rishons — assumed to be spin-1/2 objects — obey strange statistics:
in the three states of different color the rishons are not (anti)symmetrized
but ordered, e.g. V TT , TV T , and TTV .)
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The phase-space approach solves all these problems of the Harari–Shupe
model with a single stroke, while exactly reproducing its successful part [4].
The resolution is made possible by the fact that ‘phase-space rishons’ are not
spin-1/2 particles, but only the algebraic components of the charge operator.
Consequently, there is no problem (1) of preon confinement, (2) of where are
the fundamental spin-3/2 particles, nor (3) of ‘strange statistics’.

Furthermore, the ordering of rishons is naturally connectedwith SU(3) [4].
The ‘ordered rishon structure’ (such as V TT ) may be easily understood in
phase-space terms. Thus, the position of a rishon corresponds to one of
three directions in our macroscopic 3D space: V TT corresponds, there-
fore, to the partial hypercharge eigenvalue of −1/3 in direction (x, px) and
to the same eigenvalue of +1/3 in both remaining directions, (y, py) and
(z, pz). Since any discussion of rotations requires three directions, the con-
cept of spin cannot be applied to a single rishon. It is thus most appropriate
to quote here the following words of Heisenberg [1]: ‘... the antinomy of
the smallest dimensions is solved in particle physics in a very subtle man-
ner, of which neither Kant nor the ancient philosophers could have thought:
The word “dividing” loses its meaning’.

7. Transformations in phase space

In order to grasp the meaning of the relation between quarks and lep-
tons in phase-space terms, consider first [4] a transformation of Ak and Bl
generated by F σ−2, one of six ‘genuine’ SO(6) generators F σ±n (n = 1, 2, 3):

F σ−n = 1
2 (σ0 ⊗ σn − σn ⊗ σ0)⊗ σ3 ,

F σ+n = 1
2 εnkl σk ⊗ σl ⊗ σ3 . (11)

For the F σ−2-generated transformations one gets:

A′k = A1 cosφ−A3 sinφ , B′1 = B1 cosφ+B3 sinφ ,
A′2 = A2 , B′2 = B2 ,

A′3 = A3 cosφ+A1 sinφ , B′3 = B3 cosφ−B1 sinφ , (12)

i.e. A and B rotate in opposite senses. Setting φ = ±π/2, we obtain:

Y = Y1 + Y2 + Y3 → Y ′ = −Y3 + Y2 − Y1 . (13)

From Table I it then follows that lepton and quark 2 are exchanged, while
the remaining two quarks are untouched. An analogous result is obtained
for the F σ+2-generated transformation.

The corresponding transformations in phase space may be obtained from
the condition of the invariance of

A · p+B · x . (14)
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For the phase-space counterpart of the F σ−2-generated transformations, one
then gets

[x′k, x
′
l] = [p′k, p

′
l] = 0 ,

[x′k, p
′
l] = i∆kl , (15)

with

∆ =

 cos 2φ 0 sin 2φ
0 1 0

− sin 2φ 0 cos 2φ

 . (16)

The case of lepton-quark 2 interchange (i.e. φ = ±π/2) corresponds then
(for the counterparts of both F σ−2- and F σ+2- generated transformations) to:

(quark) ∆ =

 −1 0 0
0 +1 0
0 0 −1

 ↔ ∆ =

 1 0 0
0 1 0
0 0 1

 (lepton) .

(17)
Thus, one may say that a quark is a lepton rotated in phase space.

Taking into account the remaining types of genuine SO(6) transforma-
tions, one obtains four sets of generalized commutation relations:

lepton quark 1 quark 2 quark 3
[x1, p1] = i
[x2, p2] = i
[x3, p3] = i

[x1, p1] = i
[p2, x2] = i
[p3, x3] = i

[p1, x1] = i
[x2, p2] = i
[p3, x3] = i

[p1, x1] = i
[p2, x2] = i
[x3, p3] = i

. (18)

When a reflection in phase space (e.g. p′k = pk, x′k = −xk, but i = i) is per-
formed, the number of sets is doubled from four to eight, with i in Eqs. (18)
changed to −i. The two sectors corresponding to the imaginary unit on the
r.h.s. of commutation relations being i and −i correspond to doublets of
weak isospin. In conclusion, we obtain 8 disjoint sectors corresponding to 8
particles of a single generation of the Standard Model. Antiparticles are ob-
tained by complex conjugation, which may be defined as p′k = pk, x′k = −xk,
and i = −i, which is clearly different from phase-space reflection.

Note that each of the three rightmost sets of commutation relations in
Eq. (18) is not rotationally invariant. In my opinion, this by itself does not
pose any problem since in our experiments we never deal with individual
quarks. The only condition that must be satisfied is that those systems
which are composed of quarks and to which we have experimental access
(i.e. mesons, baryons, color-singlet combinations of quark currents with
meson quantum numbers) must be described by structures covariant under
rotations. Thus, the conjecture is that quarks must conspire when forming
mesons and baryons. The question then is whether in our scheme such
a conspiracy can be achieved.
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8. Hints of conspiracy

The first hint of quark conspiracy comes from the consideration of the
concepts of lepton and quark mass. In order to discuss the issue of mass, a
study of the Clifford algebra of nonrelativistic phase space is needed. This
64-element algebra may be decomposed into its even and odd parts (with
their elements being linear combinations of products of an even or odd num-
ber of Am and Bn). The unit element and the 15 SO(6) generators may be
projected upon the I3 = ±1/2 subspaces, thus forming 32 even elements.
The remaining 32 odd elements may be divided into two parts, of which one
constitutes Hermitian conjugate of the other. The U(1)⊗ SU(3) structure
of one such odd part is presented in Table III. In this table, we show 16
odd elements with left and right eigenvalues of I3l = +1/2 and I3r = −1/2,
respectively. In the columns marked Yl and Yr, the left and right eigenvalues
of Y are given. A detailed explanation of entries in this table is given in [5].
Table III is relevant for the discussion of the concept of mass. Namely, the
algebraic counterpart of lepton mass should be odd (just like the odd Am is
associated with pm) and must be identified (up to Hermitian conjugation)
with the only Y = −1 scalar element in Table III, i.e. with G0. It may be
verified that the F±2-generated transformation from the lepton to the quark
sector changes G0 into G{22}, which is a member of the SU(3) sextet, and
contains SO(3) singlet and tensor pieces. In particular, therefore, the alge-
braic counterpart of quark mass appears non-invariant under rotations. Yet,
the sum over the three colors of such quark mass elements, i.e.

∑
kG{kk},

is rotationally invariant, just as the idea of quark conspiracy suggests.

TABLE III

Odd elements of Clifford algebra according to their U(1)⊗ SU(3) properties.

U(1) SU(3) Elem. Yl Yr

+1 3∗ U†k + 1
3 + 1

3

−1 3 Vk + 1
3 −1

−1 3 Wk −1 + 1
3

+1 6 G{kl} + 1
3 + 1

3

−3 1 G0 −1 −1

The above concept of quark mass is different from that assumed in the
Standard Model. It should be stressed, however, that the application of
the standard concept of mass to quarks leads to problems and conceptual
inconsistencies. Such problems stem from the fact that in many standard
calculations quarks are treated as free objects, despite the necessity of being
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treated as confined ones. For example, it is such treatment of quarks that
led to the long-standing puzzle of the violation of Hara’s theorem in the EM
gauge-invariant quark model description of the weak radiative hyperon de-
cays (see [15]). Now, in the standard field-theoretical description of baryons,
the violation of Hara’s theorem requires a violation of electromagnetic gauge
invariance. The only known and consistent way of avoiding this unwanted
and seemingly impossible result of the quark model is to evaluate these de-
cays at the hadronic level, keeping the symmetries of the quark-level algebra
of currents, but avoiding altogether the use of the standard concept of quark
mass (see [16]).

The second hint of conspiracy comes from an analysis of the concept
of additivity for composite systems [17]. Consider a system composed of
ordinary particles such as leptons, hadrons, or classical particles. In the
classical case, we know from our macroscopic experience that the momen-
tum of the whole system is obtained by simply adding the momenta of its
components. This prescription is carried over without any change to all
standard quantum formalisms. In the phase-space approach, the role of
some components of momenta is taken over by appropriate components of
positions (see Eq. (18)). A more detailed analysis [17] shows that for the set
of ‘canonical momenta’ pQ1,pQ2,pQ3 of the three colored quarks one may
use the following representation

PQ ≡

 pQ1

pQ2

pQ3

 =

 p1
1 −x1

3 +x1
2

+x2
3 p2

2 −x2
1

−x3
2 +x3

1 p3
3

 , (19)

where pik and x
i
k denote physical momenta and positions of a quark of color i,

while for antiquarks one has the form

PQ =

 p1
1 +x1

3 −x1
2

−x2
3 p2

2 +x2
1

+x3
2 −x3

1 p3
3

 , (20)

with reversed signs of all position coordinates. The structure of the relative
signs in front of these coordinates is representation independent. A look
at Eqs. (19), (20) shows that if one accepts the idea that the additivity
of momenta for ordinary particles follows from a more general concept of
the additivity of canonical momenta, then the additivity of quark canonical
momenta leads to the appearance of translationally invariant expressions in
quark–antiquark and three quark systems. Thus, the approach has the ca-
pacity of explaining the appearance of quark-confining string-like structures.
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9. Summary

To sum up, let us recall three basic ingredients of our approach:

• the suggestion that the relativistic description is largely irrelevant at
the quantum level, as the nonrelativistic character of all spatial quan-
tum numbers and the existence of a tension between relativity and
quantum physics seem to show,

• the idea of bringing more symmetry between the position and momen-
tum coordinates, argued to be especially natural in quantum physics,
which led us to the view of ‘phase space’ as the 6D macroscopic arena
on which time evolution acts, and

• Dirac-like linearization of the relevant O(6) invariant after accepting
the ‘natural’ noncommuting geometry in this 6D space.

The phase-space approach provides a possible theoretical explanation
of the origin of the SM symmetry group and the structure of a single SM
generation. In particular, it resolves all the main problems of the Harari–
Shupe model.

Clearly, one should not have the impression that our approach reduces
the whole physics to the 3D harmonic oscillator. Rather, it has been ar-
gued that any quantum approach which involves more symmetry between
momenta and positions should contain the discussed idea as a substructure,
just like the Dirac approach contains Pauli matrices, i.e. the nonrelativistic
concept of spin, as a substructure. In short, just as the geometry of ordinary
3D space is related to spin and parity, so the geometry of 6D phase-space
seems to be (additionally) related to the concepts of isospin and color.
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