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We introduce Weinberg’s idea of asymptotic safety and pave the way to-
wards an asymptotically safe chiral Yukawa system with a U(NL)L⊗U(1)R
symmetry in a leading order derivative expansion using nonperturbative
functional RG equations. As a toy model sharing important features with
the standard model we explicitely discuss NL = 10 for which we find
a non-Gaussian fixed point and compute its critical exponents. We observe
a reduced hierarchy problem as well as predictions for the toy Higgs and
the toy top mass.

PACS numbers: 12.60.Fr, 05.10.Cc, 12.38.Lg

1. Introduction

Quantum field theory (QFT) has been very successful in the description
of a large number of phenomena, in particular in high energy physics. How-
ever, there is a widespread belief that QFT in many cases only accounts for
effective theories and that it is not suited to constitute a fundamental theory
but should be replaced by another concept at a microscopic scale. This is due
to the apparent non-renormalisability of important action functionals, e.g.
the Einstein–Hilbert action, describing gravity [1–4]. Furthermore the stan-
dard model of particle physics is plagued by the problem of triviality in the
sector describing quantum electrodynamics (QED) [5–8] and in the Higgs
sector [9–14], which forbids to extend the standard model beyond a cer-
tain ultraviolet scale. However, the issue of non-renormalisability is often
adressed within perturbative QFT, which is not an essential concept of QFT
itself. For perturbative QFT to apply it has to be possible to expand about
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vanishing interactions, i.e., about the Gaussian fixed-point (GFP), which is
a severe limitation. A more general conceptual understanding of QFT, not
sticking to the constraint of perturbativity, was elucidated byWeinberg when
he introduced the idea of asymptotic safety [15–17]. In an asymptotically
safe QFT the microscopic action entering the functional integral approaches
an interacting fixed point in the space of action functionals in the infinite
UV cutoff limit. Thus no unwanted divergencies can occur. This renders the
theory well-defined on all scales. The scenario has already been applied to a
number of models ranging from four-fermion models [18–20], simple Yukawa
systems [21, 22], nonlinear sigma models in d > 2 [23], extra-dimensional
gauge theories [24], and gravity [25–29].

The idea of asymtpotic safety has gained considerable attention in the
context of gravity, especially in the last 10 years. In fact, there is a lot of
evidence that such an interacting fixed point exists for diffeomorphism in-
variant actions, allowing for a formulation of a non-perturbative renormal-
isable quantum field theory of gravity [25–28]. The calculations necessary
to compute the RG flow in theory space, however, are tedious and involve
a number of techniques, such as e.g. the background field method, that com-
plicate the discussion of the bare concept of asymptotic safety considerably.
It would, therefore, be convenient to have a simpler setting, where the idea
and the basic concepts of asymptotic safety could be tested and understood
in a transparent manner.

On the quest for such a simpler setting the standard model with its
problem of triviality might be a beacon. Here, the Landau poles of per-
turbation theory in the QED and the Higgs sector suggest that one should
introduce new degrees of freedom for a fundamental description of particle
physics. However, before doing so a non-perturbative computation of the
Higgs sector including fermions and also gauge fields would have to show
whether the problem of triviality still persists or whether the theory might
be asymptotically safe in Weinberg’s sense, by acquiring a fixed point in
the ultraviolet. As a step towards this scenario, we investigate a toy model
for the standard model without gauge fields and with a particular chiral
left/right asymmetry [22]. To leading order in the derivative expansion, we
find an asymptotically safe theory which is well-defined on all scales (renor-
malisable) with a highly predictive power and comparatively simple from
a computational point of view. Apart from a possible application to the
complete standard model of particle physics including a prediction of the
Higgs and the top mass, it also allows for a better understanding of how
asymptotic safety works.

This contribution is organised as follows: in Sec. 2 we briefly recall triv-
iality and the hierarchy problem as they occur in the Higgs sector of the
standard model. Sec. 3 introduces the idea of asymptotic safety and the



An Asymptotic-Safety Mechanism for Chiral Yukawa Systems 543

Wetterich equation, which is our tool to investigate QFT non-perturbatively.
In Sec. 4 we discuss our toy model, a particular chiral Yukawa system, whose
fixed-point structure is analysed in Sec. 5. Conclusions are drawn in the last
section.

2. Two problems of the Higgs sector

In the Higgs sector of the standard model we find the problem of trivi-
ality and the hierarchy problem. To understand the nature of the triviality
problem, it suffices to consider a purely bosonic theory, where we mimic the
Higgs field in terms of a single component real scalar field φ, with a La-
grangian

L =
1
2

(∂µφ)2 +
m2

2
φ2 +

λ

8
φ4 . (1)

Using one-loop RG-improved perturbation theory we can establish a relation
between the bare and the renormalized four-Higgs–boson coupling λφ4

1
λR
− 1
λΛ

= β0 log
(
Λ

mR

)
, β0 = const. > 0, (2)

where λΛ and λR are the bare and the renormalised couplings, respectively,
Λ is the ultraviolet cutoff scale and mR the renormalised mass. For fixed
non-zero (non-trivial) λR and mR the bare coupling λΛ runs into a pole at
a finite UV scale, the Landau pole ΛL. This indicates the breakdown of the
perturbative QFT at this scale.

For a purely bosonic theory also a nonperturbative treatment of QFT
(e.g., on the lattice) confirms triviality, inhibiting the theory to be funda-
mental. However, the standard model Higgs sector of course contains bosonic
and fermionic degrees of freedom; as we show in Sec. 5, a balancing of the
fermionic and bosonic quantum fluctuations can make the pole disappear
and render the system well-defined on all scales.

Whereas the triviality problem is a conceptual problem, the hierarchy
problem is only a problem of the unnaturalness of strongly fine-tuned initial
conditions. We observe a huge hierarchy in the standard model between
the electroweak scale ΛEW ∼ 102 GeV and e.g. the scale of a grand unified
theory ΛGUT ∼ 1016 GeV. The Higgs mass renormalises quadratically with
the UV cutoff Λ and in perturbation theory the relation between bare and
renormalised mass is given by

m2
R ∼ m2

Λ,UV − δm2 . (3)

Here, the renormalised mass is of the order of m2
R ∼ 104 GeV2, and the

fluctuation contribution is of the order of the cutoff Λ2 ∼ δm2 = X ×
1032 GeV2 (here, X is a pure number depending on the coupling values).
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As a consequence, the counter term has to be m2
Λ,UV = 1032(X + . . .

10−28) GeV2. It is this second term in parentheses which has to be fine-
tuned to a relative precision of Λ2

EW/Λ
2
GUT ∼ 10−28. In an RG language this

quadratical cutoff dependence corresponds to a renormalisation at a nonin-
teracting (Gaussian) fixed point with a critical exponent Θ = 2. A nonper-
turbative analysis with an interacting fixed point might have small critical
exponents, e.g. close to zero, which could lead to a weaker cutoff dependence
and the chance to make the hierarchy problem disappear. We present such
a computation with a reduced hierarchy problem in Sec. 5.

3. Asymptotic safety and the flow equation

In this section we sketch the idea of asymptotic safety, comprehensive
reviews on asymptotic safety can be found in [16, 29]. Consider an effec-
tive average action Γk[χ] of an effective quantum field theory at scale k.
This is an action functional in the set of fields χ and consists of operators
which are compatible with the underlying symmetries. Γk[χ] contains all
the fluctuations of the quantum fields with momenta larger than k. It can
be understood as an effective theory where a tree level evaluation suffices to
describe physics at scale k. We can think of Γk[χ] as an expansion in terms
of (dimensionless) running couplings gi,k and all possible field operators Oi.

Γk[χ] =
∑
i

gi,kOi , e.g . Oi =
{
χ2, χ4, (∂χ)2, . . .

}
. (4)

The dependence of the effective action on the scale k, i.e. the renormaliza-
tion group flow, is given by the β functions of the running couplings,

∂tΓk[χ] =
∑
i

βi,kOi , where βi,k = ∂tgi and ∂t = k
d

dk
. (5)

The field operators span the theory space, as is shown in Fig. 1. On the
left-hand side of Fig. 1 a sketch of the RG flow is given. The position of the
effective average action Γk[χ] in theory space is given by a set of coordinates
of running couplings {gi,k}. As we lower the scale from k to k −∆k by an
RG step, the transformation of the running couplings and so the change of
position in theory space is described by the β functions and we end up at
a different effective average action Γk−∆k[χ] at the new scale.

Suppose, there is a (possibly non-Gaussian) fixed point in theory space
(see r.h.s. of figure 1) where βi,k = 0 ∀ i. If we can find an RG trajectory
which connects the fixed point with a meaningful physical theory represented
by an effective average action ΓIR at some infrared scale, then we have found
a quantum field theory, which can be extended to arbitrarily high scales,



An Asymptotic-Safety Mechanism for Chiral Yukawa Systems 545

Fig. 1. Sketch of a 3 dimensional subspace of theory space spanned by three op-
erators with associated couplings g1, g2 and gi. Left panel: an RG step shifts the
effective average action at a scale k to a different point at a lower scale. Right panel:
RG flow from an ultraviolet fixed point to a physical infrared effective action.

since for the cutoff scale Λ → ∞ we just run into the fixed point and no
pathological divergencies can appear. This solves the triviality problem.
Note that in the perturbative setting of the standard model, the only fixed
point is the Gaussian fixed point, which is not connected to a physically
sensible (non-trivial) effective action in the IR.

In the vicinity of a fixed point g∗ = {g∗i } we can study the behaviour of
the RG trajectories near the fixed point, using the linearized flow equations

∂tgi = Bi
j
(
gj − g∗j

)
, Bi

j =
∂βi
∂gj

∣∣∣∣
g∗

+O
(
(g − g∗)2

)
. (6)

The solution reads

gi = g∗i +
∑
I

CIV
I
i

(
k0

k

)ΘI

, (7)

where the integration parameters CI define the initial conditions at a ref-
erence scale k0. Furthermore, the eigenvectors V I and the negative of the
eigenvalues ΘI of the stability matrix Bj

i satisfy BijV I
j = −ΘIV I

i . For the
flow towards the UV, the directions in theory space with Re{ΘI} > 0 (rele-
vant directions) are attracted towards the fixed point, see Fig. 2, left panel.
The set of trajectories which run into the fixed point is called the critical sur-
face S. The number of linearly independent relevant directions at the fixed
point corresponds to the dimension of S. These directions determine the
physics in the infrared and the number of physical parameters to be fixed.
The theory is predictive if dim(S) is finite. The directions with Re{ΘI} < 0
run away from the fixed point as we increase k, see Fig. 2, left panel. By con-
trast, as we decrease k, the irrelevant directions rapidly approach the critical
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Fig. 2. Left panel: flow towards the UV in the vicinity of the fixed point. Relevant
directions approach the fixed point (dark gray/blue arrows) and span the critical
surface; irrelevant directions run away from the fixed point for k → ∞ (light
gray/green arrows). Right panel: flow towards the IR. As the irrelevant directions
are strongly attracted to the critical surface, the IR observables of the theory are
solely determined by the relevant directions.

surface, as displayed in Fig. 2, right panel. Therefore, the observables in the
IR are all dominated by the properties of the fixed point, independently of
whether the flow has started exactly in or near the critical surface. This
establishes the predictive power of the asymptotic safety scenario.

If a critical exponent is much larger than zero, say of O(1), the RG
trajectory rapidly leaves the fixed-point regime towards the IR. Therefore,
separating a typical UV scale where the system is close to the fixed point
from the IR scales where, e.g., physical masses are generated requires a
significant fine-tuning of the initial conditions. In the context of the standard
model, the size of the largest ΘI is a quantitative measure of the hierarchy
problem.

As the non-perturbative tool to search for a NGFP in the space of action
functionals and to compute the properties at this FP, we use the Wetterich
equation which provides a vector field β in theory space in terms of RG β
functions. The flow of the effective average action Γk is determined by [30]:

∂tΓk[χ] = 1
2 STr

{[
Γ

(2)
k [χ] +Rk

]−1
(∂tRk)

}
. (8)

Here, Γ (2)
k is the second functional derivative with respect to the field χ. The

function Rk denotes a momentum-dependent regulator that suppresses IR
modes below a momentum scale k. The solution to the Wetterich equation
provides for an RG trajectory in theory space, interpolating between the bare
action SΛ to be quantized Γk→Λ → SΛ and the full quantum effective action
Γ = Γk→0, being the generating functional of 1PI correlation functions; for
reviews, see [31].
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4. A chiral Yukawa system

As a toy model for the standard model we employ a Yukawa theory
with chiral fermions including one right-handed fermion ψR and NL left-
handed fermions ψaL, which are coupled to NL complex bosons φa via a
simple Yukawa interaction term h̄k [22]. The theory space is truncated by
an action functional in leading order derivative expansion and reads

Γk =
∫
ddx
{
i
(
ψ̄aL/∂ψ

a
L + ψ̄R/∂ψR

)
+
(
∂µφ

a†
)

(∂µφa)

+Uk(ρ) + h̄kψ̄Rφ
a†ψaL − h̄kψ̄aLφaψR

}
, (9)

where we define ρ = φa†φa. The index k at the Yukawa coupling and
the effective potential shall indicate their scale dependence, which will be
governed by the Wetterich equation. The action is invariant under chiral
U(NL)L⊗U(1)R transformations. Additionally to the perturbative complica-
tions of triviality and the hierarchy problem, this toy model also shares the
feature of a left-handed chiral sector with the Higgs-top sector of the stan-
dard model. The number of left-handed fermions NL is left as a free param-
eter in order to study the dependence of a potential fixed point on a varying
number of degrees of freedom. Various models with Yukawa-type interac-
tions have already been studied within this derivative expansion technique
and yielded reliable results in low-energy QCD [32], critical phenomena [33],
and ultra-cold fermionic atom gases [34].

For the analysis of the fixed-point structure we introduce dimensionless
quantities

ρ̃ = k2−dρ , h2 = kd−4h̄2
k , u(ρ̃) = k−dUk(ρ)|ρ=kd−2ρ̃ . (10)

The dimensionless effective potential u is expanded about its dimensionless
minimum κ := ρ̃min > 0,

u =
λ2

2!
(ρ̃− κ)2 +

λ3

3!
(ρ̃− κ)3 + . . . with κ, λnmax , λ2 > 0 . (11)

This potential describes a theory in the regime of spontaneously broken
symmetry (SSB), which is depicted in Fig. 3. The constraints formulated in
the expansion of the effective potential make sure that it is bounded from
below and constitutes an expansion about a positive minimum. We could
also think of an expansion about vanishing minimum, which would describe
the theory in the symmetric regime. However, the existence of a suitable
FP in the symmetric regime has been ruled out within the validity limits of
the derivative expansion [22].
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Fig. 3. Sketch of the scale-dependent effective potential u as a function of the field
φa. For a theory in the regime of spontaneously broken symmetry we employ an
expansion about a positive minimum at κ, corresponding to a nonvanishing vacuum
expectation value (v.e.v.) for the bosonic field.

5. Fixed points and critical exponents

To understand the occurence of fixed points in this model we investigate
the loop contributions to the running of the dimensionless version of the
squared bosonic field expectation value κ in its flow equation of the form

∂tκ = −2κ+ bosonic interactions− fermionic interactions . (12)

A positive sum of the contribution from the interaction terms gives rise to
a fixed point at κ > 0 and allows for asymptotic safety, as we demonstrate
below. For a negative sum, no fixed point is possible [22]. Since fermions
and bosons contribute with opposite signs to the interaction terms, the ex-
istence of a fixed point κ∗ > 0 crucially depends on the relative strength
between bosonic and fermionic fluctuations, as is sketched in Fig. 4. In this
figure the solid line depicts the free massless theory with a trivial Gaussian
fixed point at κ = 0. If the fermions dominate, the interaction terms are
negative and the fixed point is shifted to negative values (being irrelevant
for physics), cf. dotted line. If the bosonic fluctuations dominate, the κ flow
develops a non-Gaussian fixed point at positive values κ∗ > 0, cf. dashed
line. This fixed point is UV attractive, implying that the v.e.v. is a relevant
operator near the fixed point. If the interaction terms are approximately κ
independent, the slope of ∂tκ near the fixed point is still close to −2, corre-
sponding to a critical exponent Θ ' 2 and a persistent hierarchy problem.
An improvement of “naturalness” could arise from a suitable κ dependence
of the interaction terms that results in a flattening of the κ flow near the
fixed point, cf. dot-dashed line.

The fixed point in the SSB regime induces a new mechanism for asymp-
totic safety: near the fixed point, the v.e.v. exhibits a conformal behavior,
being always proportional to the actual RG scale k. If the v.e.v. was propor-
tional to a fixed threshold scale (as is usually the case during a symmetry-
breaking transition), the v.e.v. would induce the decoupling of massive
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∂tκ

κκ∗

bosonic fluctuations
domintate

fermionic fluctuations
domintate

Fig. 4. Sketch of the β-function for the dimensionless squared Higgs vacuum expec-
tation value κ. Dominating fluctuations of the boson field allow for a positive κ∗

(dashed line) and a suitable κ-dependence flattens the β-function near the fixed-
point, which reduces the hierarchy problem (dot-dashed line).

modes below this threshold. But as the v.e.v. runs with the scale, the sys-
tem is always in the onset domain of these threshold effects without showing
any decoupling. In other words, this conformal-vev mechanism renders the
threshold effects strong enough to induce the fixed point, but at the same
time weak enough in order to avoid decoupling.

For the conformal-vev mechanism to appear, the bosonic and fermionic
contributions have to be balanced. Whether or not this is possible depends
on the degrees of freedom and the algebraic structure of the theory: in Fig. 5
we show the loop contributions from the bosonic and fermionic fluctuations,
which are particular for our model. The left loop involves only inner boson
lines. The vertex λ2 allows for a coupling between all available boson com-
ponents. This implies a linear dependence on NL for the renormalization
of the boson contribution. For the fermion loop on the r.h.s of Fig. 5 the
incoming boson φa fully determines the structure and does not allow for
other left-handed inner fermions than ψaL, inhibiting an NL dependence of
this loop.

For a systematic analysis of the fixed-point structure let us start with

φaφa

φb

λ2

φaφa

ψa
L

ψR

h h

Fig. 5. Loop contributions to the renormalization flow of the Higgs dimensionless
vev. The loop on the l.h.s. couples all available boson components giving a linear
dependence on NL. This is not the case for the fermionic loop on the r.h.s. which
is fully determined by the incoming boson field component.
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a very basic truncation only involving the flowing minimum of the effective
potential κ, the four-boson interaction λ2 and the Yukawa coupling h. For
the fixed points we have to solve a set of nonlinear algebraic equations of
the form

∂th
2 = βh = 0 , (13)

∂tλ2 = βλ = 0 , (14)
∂tκ = βκ = 0 . (15)

The β functions for the couplings κ and λ2 can be computed from the effec-
tive potential flow, yielding

βκ = −2κ+
(2NL − 1)

32π2
+

3
32π2(1 + 2κλ2)2

− h2

4π2λ2(1 + κh2)2
, (16)

βλ =
(2NL − 1)λ2

2

16π2
+

9λ2
2

16π2(1 + 2κλ2)3
− h4

2π2(1 + κh2)3
, (17)

and the β function of the Yukawa coupling reads

βh =
1

16π2

h4

(1 + κh2)

{
− 6κλ2

(1 + 2κλ2)2

(
1

1 + κh2
+

2
1 + 2κλ2

)
−
(

1
1 + κh2

+ 1
)

+
1

(1 + 2κλ2)

(
1

1 + κh2
+

1
1 + 2κλ2

)
+

2κh2

(1 + κh2)

(
2

1 + κh2
+ 1
)

+ 2λ2κ

(
1

1 + κh2
+ 2
)

− 2κh2

(1 + κh2)(1 + 2κλ2)

(
2

1 + κh2
+

1
1 + 2κλ2

)}
. (18)

The explicit derivation of these β functions using the Wetterich equation
together with an optimised regulator [35] can be found in [22]. With these
β functions we find non-Gaussian fixed points (NGFPs) for 1 ≤ NL ≤ 57.
An extension of the truncation in the effective potential shows a reliable
convergence of the fixed point and its critical exponents [22]. An extension
of the fixed-point analysis with a truncation to next-to-leading order in the
derivative expansion by introducing flowing wave function renormalisations
for the left-/right-handed fermion fields as well as for the boson field is not
straightforward, since the algebraic structure of the β functions becomes
more involved. We have found no analytical way to solve those equations.
Numerical evidence suggests that the fixed point might be destabilized by
large anomalous dimensions at next-to-leading order. This is not surprising,
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Fig. 6. Critical exponents for the NGFPs in the leading order truncation as a func-
tion of NL. The fixed point corresponding to the open circles has two relevant
directions, whereas the fixed point corresponding to the filled circles has only one
relevant direction.

as many massless Goldstone and fermion modes exist in the present model
also in the SSB regime which can induce instabilities. As the standard model
does not have these massless modes, it is natural to expect that this issue
at next-to-leading order is resolved by introducing gauge fields. In Fig. 6
we show the critical exponents of the basic three parameter truncations as
a function of the left-handed fermion number NL. As an explicit example
to show how asymptotic safety leads to predictivity for toy standard model
observables we study a leading order truncation expanded up to (λ6/6!ρ6)
in the effective potential and NL = 10. We find (non-universal) fixed-point
values

κ∗ = 0.0152 , λ∗ = 12.13 , h∗2 = 57.41 .

For the universal critical exponents we obtain

Θ1 = 1.056 , Θ2 = −0.175 , Θ3 = −2.350 .

There is only one relevant direction, corresponding to one physical parameter
to be fixed. All other parameters are predictions of the theory. The exponent
of the relevant direction is 1.056 (as compared to 2 near the Gaussian fixed
point), such that the hierarchy problem is weakened. We will fix the flow
by the IR value of κ. In a realistic model this would correspond to the vev
(which can be determined from the Z/W -boson masses)

v = lim
k→0

√
2κk . (19)

The IR values of the other two parameters are predicted by the RG flow
starting from the NGFP in the UV and are related to the Higgs and the top
mass.

mHiggs =
√
λ2v , mtop =

√
h2v . (20)



552 M.M. Scherer, H. Gies, S. Rechenberger

Choosing the standard model v.e.v. v = 246GeV the predictions within this
toy model are [22]

mHiggs = 0.97v ' 239 GeV , mtop = 5.78v ' 1422 GeV . (21)

6. Discussion and conclusions

In this contribution we sketched the idea of asymptotic safety and ex-
plained how this scenario could conceptually be applied to solve the prob-
lems of triviality and hierarchy in the standard model of particle physics.
Therefore, we use the functional RG in the formulation by Wetterich as a
nonperturbative tool for QFT, and derive flow equations for a chiral Yukawa
model with one right-handed and NL left-handed fermions. This asymmetry
of the fermion species allows for a balancing of the fermion and the boson
fluctuations and, therefore, can generate a NGFP in theory space. We find
NGFPs for 1≤NL≤57 and analyse the properties and predictions of asymp-
totic safety explicitely for the example NL = 10. Here we find a NGFP
with one relevant and two irrelevant directions in theory space in a basic
truncation, allowing for a prediction of the toy Higgs and the toy top mass.

This result is stable with respect to an extension of the truncation in the
effective potential. Due to the existence of massless Goldstone and fermion
fluctuations, which are not present in the standard model, we observe a
possible destabilisation at next-to-leading order in the derivative expansion.
A more realistic model requires gauge bosons, potentially stabilizing our
scenario. Work in this direction is under way. In fact, the NGFP discussed
in the present work has first been discovered in a simpler Z2 invariant Yukawa
system, where the discrete symmetry does not give rise to Goldstone bosons
in the broken regime [21]. Even though the fixed point exists in the Z2

model only for somewhat esoteric fermion flavor numbers Nf . 0.3, the
fixed point and its critical properties have been shown to remain stable also
at next-to-leading order in the derivative expansion.

We conclude that an asymptotically safe gauged version of our model
has the prospect of quantitatively predicting IR observables such as particle
masses, which are free parameters in a perturbative analysis of the standard
model. It would solve the problem of triviality structurally and it could
improve the hierarchy problem. Put on a gravitational background as in [36]
and in connection with the asymptotic safety scenario in quantum gravity
this could constitute a fundamental version of all known interactions which
is valid on arbitrarily large scales.
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