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We prove the existence of a limit of the finite volume probability mea-
sures generated by tree growth rules in Ford’s alpha model of phylogenetic
trees. The limiting measure is shown to be concentrated on the set of trees
consisting of exactly one infinite spine with finite, identically and indepen-
dently distributed outgrowths.

PACS numbers: 02.50.Ey

1. Introduction

Graphs are used in many fields of science to describe relationships be-
tween individuals and to model actual physical objects. The former case
includes social networks [2], phylogenetic trees [3, 13, 14], the world-wide
web [1] and much more. The latter case includes discrete objects such as
macromolecules [10] and branched polymers [2]. The graphs can also serve
as discrete approximations to inherently continuous objects, an example of
this being triangulation of manifolds in quantum gravity, see e.g. [4].

Random graphs are commonly used to describe real deterministic net-
works. Interactions and relations in the networks can be complicated but
their characteristics are in some cases captured by random graph models, de-
fined by simple rules which are motivated by the nature of the real network.
The alpha model, introduced by Ford in [13], is an example of a random
graph model, intended to describe phylogenetic trees. It is a one parameter
model of randomly growing, rooted, planar, binary trees with the following
growth rules. Start from a single rooted edge and from a tree on n leaves,
select individual internal edges with probability weight α and individual
leaves with probability weight 1 − α where 0 ≤ α ≤ 1. Graft a new leaf to
a selected edge and thus generate a tree on n+ 1 leaves, see Fig. 1.
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Fig. 1. The grafting process. The link (a, b) is selected with probability weight α
and the link (a′, b′) is selected with probability weight 1 − α. The selected link is
removed, two new vertices c and d and three new links are added as shown in the
figure. In this example, a is the root which is indicated by a dashed line.

Ford proved that the model is Markovian self-similar which means infor-
mally that a subtree below an edge is distributed identically to the whole
tree, a more precise definition will be given in the main section. He also
showed that typical distances in the trees scale as nα with the system size n.
The Hausdorff dimension of a randomly growing tree is defined to be dH given
that typical distances scale as n1/dH . Thus, in the alpha model dH = 1/α.

In a recent paper [14] the continuum limit of the model has been es-
tablished in the context of fragmentation processes [5]. A generalization
to multinary trees is introduced in [7] in the alpha-gamma model where in
addition to the growth rules of the alpha model, edges can be grafted onto
vertices, increasing their degree. The alpha-gamma trees are shown to be
Markovian self-similar and a continuum limit is established.

Our motivation to study the alpha model comes from the fact that it
is a certain limiting case of a model of random trees which grow by vertex
splitting, introduced in [8] where the relation is explained. In general the
vertex splitting model does not share some of the technically convenient
properties of the alpha model such as Markovian self-similarity, and it is
more difficult to do exact calculations. The hope is that some of these
properties might hold asymptotically for large trees and therefore a good
understanding of the alpha model could be helpful.

The purpose of this paper is to establish convergence of the finite volume
measures generated by the alpha model to a measure on infinite trees. For
0 < α ≤ 1, the infinite measure is shown to be concentrated on the set of
trees consisting of exactly one infinite path from the root to infinity (spine)
with finite, identically and independently distributed outgrowths.
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2. Convergence of the finite volume measures

We start with a few definitions before presenting the model. In this
paper we only consider rooted, binary, planar trees. Rooted means that we
mark a single vertex of degree 1, binary means that vertices are only allowed
to have degree 1 or 3 and the planarity condition distinguishes between left
and right branchings. The root and vertices of degree 3 will be referred to
as internal vertices and vertices of degree 1, besides the root, will be referred
to as leaves. Denote the set of trees on n leaves by Tn and denote the set of
all finite or infinite trees by T .

The alpha model is defined by probability distributions πα,n on Tn, for
n ≥ 1, constructed in the following recursive way. Assign probability one to
the unique trees in T1 and T2. Given πα,n for some n ≥ 2, πα,n+1 is generated
by first selecting a tree τ ∈ Tn according to πα,n. Next, an individual edge
(a, b) is selected from τ with probability α/(n − α) if a and b are internal
vertices and with probability (1−α)/(n−α) if one is an internal vertex and
the other a leaf. The edge (a, b) is removed from τ and two new vertices c
and d are introduced along with the edges (a, c), (c, b) and (c, d).

Equal probability is assigned to left and right branching of the new edge
(c, d). One can think about this procedure as grafting a new edge to an
existing edge in τ , see Fig. 1. The probability of a tree τ ′ ∈ Tn+1 is thus
given by

πα,n+1

(
τ ′
)

=
∑
τ∈Tn

πα,n(τ)P
(
τ → τ ′

)
, (1)

where P(τ → τ ′) is the probability of growing the tree τ ′ from τ by the
grafting process.

The model has a property called Markovian self-similarity [13] which is
essential in the inductive proof of the theorem in this paper. Markovian
self-similarity means that there exists a function qα(·, ·) such that for every
finite tree τ0 which branches at the nearest neighbour of the root to a left
tree τ1 and a right tree τ2 (see Fig. 2) the following holds

πα,|τ0|(τ0) = qα(|τ1|, |τ2|)πα,|τ1|(τ1)πα,|τ2|(τ2) , (2)

where |τ | denotes the number of leaves in a tree τ . In words, this says
that qα(n1, n2) is the probability of a tree branching to subtrees of sizes n1

and n2. Furthermore, given that the subtrees are of these sizes they are
distributed independently by πα,n1 and πα,n2 . The function qα is explicitly
known [13] and is given by

qα(n1, n2) =
n!Γα(n1)Γα(n2)
n1!n2!Γα(n)

(
α

2
+

(1− 2α)n1n2

n(n− 1)

)
,

where n = n1 + n2,
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Γα(n) = (n−1−α)(n−2−α) . . . (2−α)(1−α) , and Γα(1) = 1 . (3)

τ0

τ2τ1

Fig. 2. An example of a tree τ0 which has a root indicated by the dashed line. The
tree τ0 branches at the nearest neighbour of the root to two subtrees, τ1 to the left
and τ2 to the right as is indicated by the dotted lines.

Before proceeding to the theorem we give a short explanation of what is
meant by convergence of probability measures. For a tree τ ∈ T let BR(τ)
be the subtree of τ which is spanned by the vertices at distance less than or
equal to R from the root of τ . Define a metric d on T by

d
(
τ, τ ′

)
= inf

{
1

1 +R

∣∣∣ BR(τ) = BR
(
τ ′
)}

. (4)

For some properties of the metric space (T, d) see [6, 11]. We will establish
weak convergence, as n → ∞ of the measures πα,n viewed as probability
measures on T , to a probability measure πα. This means that for all bounded
functions f which are continuous in the topology generated by the metric d∫

T

f(τ)dπα,n −→
∫
T

f(τ)dπα , as n −→∞ . (5)

Theorem 2.1 Let 0 < α ≤ 1. The measures πα,n, viewed as probability
measures on T , converge weakly, as n −→ ∞, to a probability measure πα
on infinite trees which is concentrated on the set of trees with one infinite
rooted spine with finite outgrowths i.i.d. by

µα(τ) =
αΓα(|τ |)
|τ |!

πα,|τ |(τ) . (6)

The probabilities of right and left branching of outgrowths are equal (see
Fig. 3).
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Fig. 3. The infinite spine with finite µα-outgrowths.

Proof. We call the maximum graph distance from the root to a leaf in a tree,
the height of the tree. Let T (R) be the set of rooted trees of height R. The
metric space (T, d) is compact and therefore it is sufficient to show that for
any R ≥ 1 and any τ0 ∈ T (R) the sequence

πα,n({τ |BR(τ) = τ0}) =: π(R)
α,n(τ0) (7)

converges to a limit π(R)
α (τ0) as n −→ ∞ [11]. We show this by induction

on R. For R = 1 this is trivial since B1(τ) ∈ T (1) for all τ . Now assume that
for some R and all τ ∈ T (R), π(R)

α,n(τ) converges as n −→ ∞. Choose a tree
τ0 ∈ T (R+1) and without loss of generality, assume it branches at the nearest
neighbour of the root to a left tree τ1 ∈ T (R) and a right tree τ2 ∈ T (S) (see
Fig. 2) where S ≤ R. Then

π(R+1)
α,n (τ0) =

∑
n1+n2=n

qα(n1, n2)π(R)
α,n1

(τ1)π(R)
α,n2

(τ2)

=
n!

Γα(n)

(
α

2

∑
n1+n2=n

Γα(n1)Γα(n2)
n1!n2!

π(R)
α,n1

(τ1)π(R)
α,n2

(τ2)

+
1− 2α
n(n− 1)

∑
n1+n2=n

Γα(n1)Γα(n2)
(n1 − 1)!(n2 − 1)!

π(R)
α,n1

(τ1)π(R)
α,n2

(τ2)

)
.

(8)

If S < R then π(R)
α,n2(τ2) = 0 when n2 > |τ2| and it is obvious from the induc-

tion hypothesis that π(R+1)
α,n (τ0) converges. Therefore assume that S = R.

Note that in (8) it always holds that either n1 ≤ n − 1 and n2 ≤ n or
n2 ≤ n− 1 and n1 ≤ n. Therefore we have the upper bound

π(R+1)
α,n (τ0) ≤

n!
Γα(n)

∑
n1+n2=n

Γα(n1)Γα(n2)
n1!n2!

.
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Terms in the sums in (8) for which n1 ≥ n
2 and n2 > A or n2 ≥ n

2 and
n1 > A where A > 1 is some constant are therefore bounded from above by

2n!
Γα(n)

∑
n1+n2=n

n1≥n/2,n2>A

Γα(n1)Γα(n2)
n1!n2!

≤ 2n!Γα([n/2])
Γα(n)[n/2]!

∞∑
n2=A

Γα(n2)
n2!

≤ C

∞∑
n2=A

Γα(n2)
n2!

−→
A−→∞ 0 , (9)

where C is a constant. The remaining contribution to (8) is from terms
where n1 ≥ n

2 and n2 < A or n2 ≥ n
2 and n1 < A. Notice that the second

term in that contribution to (8) will be of one order lower in n than the first
term. Therefore it is enough to show that the first term converges as n→∞
since then the second term clearly converges to zero. The contribution to
the first term is

n!
Γα(n)

α

2

2∑
i=1

∑
n1+n2=n
nj≤A,j 6=i

Γα(n1)Γα(n2)
n1!n2!

π(R)
α,n1

(τ1)π(R)
α,n2

(τ2)

−→
n−→∞

1
2

2∑
i=1
j 6=i

π(R)
α (τi)

A∑
m=1

αΓα(m)
m!

π(R)
α,m(τj)

−→
A−→∞

1
2

2∑
i=1
j 6=i

π(R)
α (τi)

∞∑
m=1

αΓα(m)
m!

π(R)
α,m(τj) . (10)

In the first step we used the induction hypothesis. This is the limit of
π

(R+1)
α,n (τ0) as n −→ ∞. The fact that the sum in (9) converges to zero as
A → ∞ proves that the measure is concentrated on the set of trees with
exactly one infinite spine. The last sum in (10) shows that the distribution
of the finite outgrowths is given by µα.

�
3. Conclusions

We have shown that the finite volume measures πα,n generated by the
growth rules of Ford’s alpha model converge, as n → ∞, to a measure
on infinite trees. The limiting measure is concentrated on the set of trees
consisting of exactly one infinite spine with finite outgrowths, independently
distributed by µα. The emergence of a single spine is well known from models
of size conditioned critical Galton Watson trees [12]. The case α = 1/2 is
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in fact a special case of such a tree. However, in the vertex splitting model
it is possible that an infinite number of spines emerge. This happens for
example in the special case of the preferential attachment model [9] and
in the case α = 0 in the alpha model. In both these cases the Hausdorff
dimension is infinite. One interesting question is whether a finite Hausdorff
dimension is equivalent to the emergence of a single spine and whether an
infinite Hausdorff dimension is equivalent to the existence of infinite number
of spines in the vertex splitting model.

An obvious next step is to use the formula for the limiting measure to
calculate some global properties of the alpha trees such as the Hausdorff di-
mension and the spectral dimension. The Hausdorff dimension of an infinite
random tree given by a probability distribution ν is defined as dH if

〈VR〉ν ∼ RdH , (11)

where VR(τ) is the number of edges in a ball BR(τ) and 〈·〉ν denotes expec-
tation with respect to ν. The above definition should coincide with the one
given by the scaling of a typical distance in a finite tree as discussed in the
introduction. This will be checked explicitly in a forthcoming paper.

The spectral dimension of an infinite random tree as above is defined as
ds if

〈p(t)〉ν ∼ t−ds/2 , (12)

where pτ (t) is the probability that a simple random walk which starts at the
root of a tree τ at time t = 0 is back at the root at time t. The techniques
used in [12] give a way to estimate the spectral dimension of the alpha
model from knowledge of the large R behaviour of the quantities 〈|BR|〉µα ,
µα{τ | height of τ > R} and 〈|BR|−1〉πα . Using the formula for the limiting
measure and the Markovian self-similarity properties of the outgrowths one
can write recursion equations for generating functions of these quantities.
Preliminary results indicate that indeed dH = 1/α in agreement with the
finite scaling definition and ds = 2/(1+α). In the case α = 1 this is trivially
true and in the case α = 1/2 the result is known to be true by connection
to Galton Watson trees [12]. For other values of α this has not yet been
proven.

This work is supported by the Eimskip Research Fund at the University
of Iceland. I would like to thank Thordur Jonsson, François David and Mark
Dukes for helpful discussions and valuable comments.
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