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The author shows how to construct a class of Lagrangians for rela-
tivistic dynamical systems described by position and a single spinor. One
arrives at it by imposing three requirements: (i) Hamilton action should
be reparametrization invariant, (ii) the number of dimensional parame-
ters should be minimal, (iii) the spinor phase should be a cyclic variable.
In more detail in this paper are discussed the Lagrangians which depend
on position and the spinor’s null vector only. An interesting relation of
a Hessian determinant and Casimir invariants for such objects leads to the
conclusion that no fundamental objects of this kind exist with worldlines
uniquely determinable from the Hamilton action and the initial conditions.
This unexpected result poses the general question about existence of clas-
sical fundamental dynamical systems with well posed Cauchy problem.

PACS numbers: 03.30.+p, 45.50.–j

1. Introduction

My motivation of finding a classical fundamental dynamical system with
well posed Cauchy problem arose from a related task of finding an ideal
device with non-quantum clocking mechanism. To deserve the name “ideal”,
the building blocks of such a clock should be mathematical ideals, inhab-
iting nonmaterial Platonic world of mathematical forms, sometimes con-
sidered even more realistic than the material world. As pointed out by
Staruszkiewicz [1], such a clock is a way to study some difficult and not well
understood problems in the theory of relativity, such as the clock hypothesis.
The hypothesis says that a moving clock registers its proper time even when
accelerated.
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To my mind, however, for over a century since the formulation of the
special theory of relativity, there has been no successful construction of an
ideal clock which would be deterministic and fundamental at the same time.
In the present work we will follow Staruszkiewicz construction of his fun-
damental relativistic rotator to find more general dynamical systems which,
apart from being fundamental, would be deterministic. By “deterministic”
we mean a dynamical system whose future states are uniquely determined by
its initial state. As concerns the word “fundamental” we adopt the following
definition coined by Staruszkiewicz [1]:

A relativistic dynamical system is said to be fundamental if its
Casimir invariants are parameters, not constants of motion.

For example, putting aside the fact it is non-relativistic, a steadily rotating
rigid top is not a fundamental clock, because its intrinsic angular momentum
is not independent of the initial angular velocity.

In order to construct the most elementary dynamical system with mass
and spin, moving in Minkowski spacetime in accordance with some relativis-
tically invariant laws of motion, two dimensional parameters are needed,
for example, mass M and length `. This is required by the existence
of two Casimir invariants of the Poincaré group: PµPµ with the physi-
cal dimension of M 2, and WµWµ with the physical dimension of M 4`2.
Wµ=−1

2ε
µαβγMαβPγ is thePauli–Lubański (space-like) spin pseudovector.

By applying the above definition of a fundamental dynamical system, one
obtains two independent constraints that must be satisfied by its Lagrangian.
The unspecified arbitrary parameters M and ` can now be set by relating
them directly to the fixed numerical values of the Casimir invariants. With
no loss to generality, this can be done by requiring that

PP ≡M 2 , WW ≡ −1
4
M 4`2 . (1.1)

These two constraints are referred to as fundamental conditions. The con-
ditions significantly reduce the enormous variety of relativistically invariant
actions possible for a dynamical system consisting of given mathematical
entities.

The simplest clock is described by a spacetime worldline and a single null
direction. This is a mathematical abstraction of Eulerian rotator consisting
of two point masses connected by a rigid and massless rod. When free, such
a system is expected to move periodically in the center of momentum frame.
For the sake of visualization, the clocks’s dial can be identified in the frame
with a large circle on the Riemann sphere of null directions, which is the
image of the spatial direction of the conserved Pauli–Lubański spin pseu-
dovector. The null direction moves periodically about this circle, counting
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the number of times the phase has been increased by 2π. The null direction
can be thought of as the clock’s hand. Although the motion of the clock’s
hand can look nonuniform for an external observer (the clock is conformally
distorted), the 2π-period will transform via a Lorentz factor (at least when
the clock is in free motion).

The fundamental relativistic rotator constructed in [1] provides an ex-
ample of such an ideal clock. Recently, however, it has been shown, that the
Cauchy problem for this clock is ill posed [2]. Thus, ideal classical clocks,
if exist both as fundamental and deterministic dynamical systems, must be
more complex devices.

This unexpected result poses the question about the existence of fun-
damental dynamical systems in general. It seems improbable that funda-
mental conditions would always imply ill-posedness of the Cauchy problem,
it is therefore necessary to construct a counterexample. For that purpose
one can consider a class of dynamical systems consisting of a worldline and
a single spinor. A spinor can be imagined as a pair consisting of a null
vector and a phase associated with rotation in a spatial plane orthogonal
to the null vector. The simplest generalization of the fundamental relativis-
tic rotator is thus obtained by finding a fundamental dynamical system in
this extended class. One of possibilities is that such a system could depend
on the spinor’s null direction and that the spinor’s phase would be a cyclic
variable. The other possibility, is to completely neglect the spinor’s phase
and consider a system consisting of a worldline and a single null vector.
The third possibility, which presumably will contain a deterministic and
fundamental dynamical system, is to assume only that the phase is a cyclic
variable. In the present work we shall investigate only the second possibility
which, in principle, is equivalent to considering breathing rotators already
studied in [4].

2. A tetrad method for spinors and spinor invariants

A spinor κ is a two component entity over complex numbers that trans-
forms linearly under the action of SL (2,C) group. With each spinor one can
associate a null vector

kµ = κ+σµκ ,

where σµ are four Pauli matrices. Two spinors with the same null vector
differ by a phase. To complete the space of spinors one can associate with
κ a mate spinor τ by requiring that κ0τ1 − κ1τ0 = 1. The antisymmetric
form associates a volume element with a pair of spinors and is an invariant
of SL (2,C) group.

A spinor κ can be uniquely determined by specifying 4 real numbers:
two spherical angles θ and φ determining the null direction of k, the spinor’s
magnitude Ψ = +

√
κ+κ, and the spinor’s phase Φ. Then
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κ = eiΦ/2
√
Ψ

[
e−iφ/2 cos (θ/2)
eiφ/2 sin (θ/2)

]
,

τ = e−iΦ/2√
Ψ

[
−e−iφ/2 sin (θ/2)
eiφ/2 cos (θ/2)

]
.

Since τ̃ = τ +λe−iνκ also solves the unit volume condition for any real λ, ν,
the mate spinor τ is determined up to a transformation which, from the
viewpoint of spinor σ, can be considered as a gauge.

2.1. Spinor tetrads and spinor gauge transformations

Let m and m̃ be null vectors corresponding to τ and τ̃ , respectively,
then m̃µ = mµ + 2λ cos (ν) aµ + 2λ sin (ν) bµ + λ2kµ, where mµ = τ+σµτ ,
m̃µ = τ̃+σµτ̃ , and

aµ =
1
2
(
τ+σµκ+ κ+σµτ

)
, bµ =

1
2i
(
τ+σµκ− κ+σµτ

)
, (2.1)

are unit space-like vectors such that ab = ak = bk = 0. Analogously,
one defines vectors ã and b̃ corresponding to the gauged spinor τ̃ , then
ãµ = aµ + λ cos (ν) kµ and b̃µ = bµ + λ sin (ν) kµ.

This simple construction shows that every spinor uniquely determines
in Minkowski space a family of spinor tetrads (k,m, a, b). The family is
invariant with respect to the action of the group of the following gauge
transformation

kµ → k̃µ = kµ ,

aµ → ãµ = aµ + αkµ, α ∈ R ,
bµ → b̃µ = bµ + βkµ, β ∈ R ,
mµ → m̃µ = mµ + 2αaµ + 2βbµ +

(
α2 + β2

)
kµ . (2.2)

A composition of two such transformations with parameters (α1, β1) and
(α2, β2) is again a gauge transformation with parameters (α1+α2, β1+β2).

A spinor tetrad (k,m, a, b) forms a basis in Minkowski space. Indeed,
the following Grammian determinant is nonzero

Det


kk km ka kb
mk mm ma mb
ak am aa ab
bk bm ba bb

 = −4 6= 0 ,
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where aa = bb = −1, ab = am = ak = bm = bk = kk = mm = 0 and
km = 2. All scalar products in the above determinant are preserved under
gauge transformation (2.2). Any vector v can be expanded in the spinor
tetrad as

v = 1
2(mv)k + 1

2(kv)m− (av)a− (bv)b ,

and similarly, v = 1
2(m̃v)k̃ + 1

2(k̃v)m̃ − (ãv)ã − (b̃v)b̃. A scalar product of
vectors u and v reads uv = 1

2(kv)(mu) + 1
2(ku)(mv)− (au)(av)− (bu)(bv).

What has been found above, can be rephrased as follows: a spinor κ
uniquely defines a null vector k and a family of unit spatial vectors of the
form (compare [3])

aµ + αkµ , bµ + βkµ ,

|α| <∞ , |β| <∞ , ak = 0 , bk = 0 , ab = 0 .

The triad (k, a, b) can be completed by a null vector m which is uniquely
determined by the conditions km = 2, am = 0 and bm = 0, independently of
gauge parameters α and β. By imposing the requirement that scalar prod-
ucts be preserved when α or β are changed, m must transform as in (2.2).

2.2. Lorentz scalars for a spinor interacting with its worldline

A class of spinor tetrads (k,m, a, b) related by gauge transformation (2.2)
can be considered as a spacetime realization of a single spinor. This view-
point makes straightforward the task of finding all functionally independent
Lorentz scalars for a dynamical system consisting of a single spinor interact-
ing with its worldline.

All Lorentz scalars formed from a spinor and its first derivatives should
be invariants of gauge transformation (2.2). It is assumed that the spinor
couples minimally with its worldline. It means that the Lagrangian should be
a function of gauge invariants formed from scalar products of ẋ (the tangent
to the spinor’s worldline), spinor tetrad k,m, a, b, and velocities k̇, ṁ, ȧ, ḃ.

There is 16 nonzero scalar products formed from first derivatives of
a spinor tetrad: aḃ, ak̇, aṁ, bk̇, bṁ, ȧȧ, ȧḃ, ȧk̇, ȧṁ, ḃḃ, ḃk̇, ḃṁ, k̇k̇, k̇ṁ,
ṁṁ, mk̇. On decomposing velocities k̇, ṁ, ȧ, ḃ in the basis (k,m, a, b), one
infers that the scalars quadratic in velocities can be expressed as binomials
of scalars linear in these velocities, e.g., k̇k̇ = −((ak̇)2 +(bk̇)2). This reduces
the number of scalars to 6: aḃ, ak̇, aṁ, bk̇, bṁ, mk̇. However, they are not
functionally independent. For example, in a gauge in which k = K [1,n],
m = K−1 [1,−n], a = [0,a], b = [0,a× n], nn = aa = 1, an = 0, there is
aṁ · bk̇ = ak̇ · bṁ (not a gauge invariant).

The number of basic Lorentz scalars extends by taking into account the
interaction of spinor κ with its worldline. The tangent to the worldline, ẋ,
decomposes in the spinor basis as ẋ = 1

2(mẋ)k + 1
2(kẋ)m− (aẋ)a− (bẋ)b.



602 Ł. Bratek

This gives 4 interaction scalars mẋ, kẋ, aẋ, mẋ. It is clear that other
possible interactions k̇ẋ, ṁẋ, ȧẋ, ḃẋ or even ẋẋ add nothing new, since
they can be expressed as functions of the already found scalars, e.g., ẋẋ =
(kẋ)(mẋ)− (aẋ)2 − (bẋ)2 or k̇ẋ = 1

2(kẋ)(mk̇)− (ak̇)(aẋ)− (bk̇)(bẋ).
Accordingly, there is 10 basic Lorentz scalars describing a spinor interact-

ing with its worldline. These scalars transform under gauge transformation
(2.2) as shown in the following table

aẋ→ aẋ+ αkẋ

ak̇ → ak̇ bẋ→ bẋ+ βkẋ

bk̇ → bk̇ aḃ→ aḃ− αbk̇ + βak̇

kẋ→ kẋ mk̇ → mk̇ + 2αak̇ + 2βbk̇
mẋ→ mẋ+ 2αaẋ+ 2βbẋ+ (α2 + β2)kẋ

aṁ→ aṁ−
(
α2 − β2

)
ak̇ − αmk̇ + 2βaḃ− 2αβbk̇ − 2α̇

bṁ→ bṁ+
(
α2 − β2

)
bk̇ − 2αaḃ− βmk̇ − 2αβak̇ − 2β̇

Spinor invariants are Lorentz scalars which are independent of gauge param-
eters α and β. Scalars aṁ and bṁ must be rejected since they contain α̇
and β̇ which cannot be removed using the remaining scalars. As concerns
the 5 scalars in the upper right block (denoted respectively by J1, . . . J5),
the most general binomial in α and β is

4∑
i=1

ci + 4∑
j=i

dijJj

 Ji + c5J5 .

By equating to zero the coefficients standing at α, β, αβ, α2, and β2 in the
binomial, one obtains a system of 5 linear equations of the form AV = 0
for a 15-dimensional vector V = {c1, . . . , c5, d11, . . . , d14, d22, d23, . . . , d44}.
Since the rank of matrix A is 5, the null space of matrix A is 10-dimensional.
Two of the 10 corresponding spinor invariants are identically zero. The rank
of a rectangular matrix consisting of first derivatives of the remaining 8
spinor invariants with respect to the 10 basic scalars displayed in the above
table is 3, therefore only 3 invariants are functionally independent. Together
with the invariants in the upper-left block in this table, they give 6 func-
tionally independent spinor invariants. These findings can be summarized
as follows

There exist 6 functionally independent Lorentz scalars for a sys-
tem described by a spinor represented by a spinor tetrad k,m, a, b
interacting with its worldline. These invariants read:
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ι1 = ak̇ , ι2 = bk̇ , ι3 = kẋ ,

ι4 = (kẋ)(mẋ)− (aẋ)2 − (bẋ)2 ≡ ẋẋ ,
ι5 = 1

2(kẋ)(mk̇)− (ak̇)(aẋ)− (bk̇)(bẋ) ≡ k̇ẋ ,
ι6 = (aẋ)(bk̇)− (ak̇)(bẋ) + (aḃ)(kẋ) .

Equation (2.1) implies that when the spinor phase changes by an angle ∆Φ,
vectors a and b get rotated through the same angle

aµ → aµ cos∆Φ − bµ sin∆Φ , bµ → aµ sin∆Φ + bµ cos∆Φ .

The spinor invariants change correspondingly as

ι1 → ι1 cos∆Φ − ι2 sin∆Φ ι3 → ι3 ,

ι2 → ι1 sin∆Φ + ι2 cos∆Φ ι4 → ι4 ,

ι6 → ι6 + ι3∆̇Φ ι5 → ι5 .

3. Construction of Lagrangians

As follows from the previous section, not taking into account the world-
line scalar ẋẋ, there are only 5 functionally independent spinor invariants
which are explicitly phase-independent: ι21 + ι22, ι3, ι4, ι5 and ι6 (the latter
depends on the first derivative of the phase). However, not every combina-
tion of the invariants is suitable for a relativistically invariant Hamilton’s
action. Such an action must be reparametrization invariant. This reduces
the number of possible phase independent spinor invariants to 4:

I1 = (ak̇)2+(bk̇)2

(kẋ)2
≡ − k̇k̇

(kẋ)2
, I3 = (kẋ)(mk̇)−2(ak̇)(aẋ)−2(bk̇)(bẋ)

2kẋ
√
ẋẋ

≡ k̇ẋ
kẋ
√
ẋẋ
,

I2 = (aẋ)(bk̇)−(ak̇)(bẋ)+(aḃ)(kẋ)

kẋ
√
ẋẋ

, I4 = kẋ√
ẋẋ
.

Together with the worldline invariant I0 =(kẋ)(mẋ)−(aẋ)2−(bẋ)2≡ ẋẋ they
are suitable to construct the most general action for a dynamical system
composed of a single spinor interacting with its worldline. Spinor phase in-
dependence of the Lagrangian ensures the existence of an additional integral
of motion, independent of relativistic symmetries. This explains why spinor
invariants explicitly depending on the spinor’s phase has been rejected.

As we have established earlier, an action of a relativistic dynamical sys-
tem should possesses at least two dimensional parameters: mass M and
length `. If no other dimensional parameters are assumed, the spinor invari-
ant I4, which would introduce its own physical dimension, must be rejected.
This way one is led to the following class of actions

S [x, κ] = −M

∫
dτ
√
I0F(`2I1, `I2, `I3) . (3.1)
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This class of Lagrangians, labeled by function F , has been arrived at by
imposing only three clear requirements on a Hamilton action of a dynamical
system consisting of a spinor interacting with its worldline. Namely, (i) the
action should be reparametrization invariant, (ii) the number of dimensional
parameters should be minimal (that is, two), and (iii) the spinor phase
should be a cyclic variable.

4. A single null vector interacting with its worldline

From now on we shall be discussing a subclass of actions (3.1) depending
on the null vector of spinor κ and its worldline

−M

∫ √
ẋẋ F (P,Q) dτ , P = `

k̇ẋ

kẋ
√
ẋẋ

, Q = −`2 k̇k̇

(kẋ)2
. (4.1)

This class of dynamical systems was studied in more detail in [4] as exten-
sion of the class of rotators studied in [2] that includes the fundamental
relativistic rotator [1]. Here we recall only the most important results.

The invariance with respect to space-time translations and space-time
rotations, implies conservation of momentum Pµ and angular momentum
Mµν , respectively. The Casimir invariants of the Poincaré group are

PP = M 2
(
(F − P F,P ) (F − P F,P − 4QF,Q )−QF,P2

)
,

WW = −M 4 `2Q
(
F,P

2 + 2F,Q (F − P F,P )
)2
.

By applying fundamental conditions (1.1) one obtains two independent dif-
ferential equations for unknown function F . There is no apparent reason
for these two unrelated differential equations to have a common solution.
Remarkably enough, two such solutions are possible giving rise to two fun-
damental dynamical systems. These solutions can be found by means of
Legendre transformations and they read [4]

F (P,Q)=±

√(
1±
√
Q
)(

1+
P2

Q

)
, F (P,Q)=νP ±

√
1±
√
Q−ν2Q ,

where ν ∈ R is a dimensionless integration constant of fundamental condi-
tions.

Before presenting the actions corresponding to these solutions, it will be
instructive to discuss some implications of the following relationship between
a Hessian determinant associated with action (4.1) and a Jacobian determi-
nant of an F -dependent mapping (PP (P,Q) ,WW (P,Q)) derived in [4]

detH = K
F − P F,P

F,P (P2 +Q)− PF

∣∣∣∣∂ (PP,WW )
∂ (P,Q)

∣∣∣∣ . (4.2)
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Here, H is a matrix of second derivatives of the Lagrange density in action
(4.1) with respect to generalized velocities associated with all dynamical de-
grees of freedom. Kinematical factor K is a function of generalized velocities
and it is independent of function F .

In the distinguished case when F,P
(
P2 +Q

)
− PF = 0, that is, when

F =
√

1 + (P2)/QS (Q) with S being some function, the Jacobian de-
terminant vanishes, but not necessarily does the Hessian determinant (in-
determinate form 0

0). In this case the Casimir invariants are functionally
dependent: PP = M 2S (S − 4QS′) and WW = −

(
2M 2`S

√
QS′

)2, while
detH ∝ (QS3S′)/

(
P2 +Q

)2(2Q (S′)2 + S (S′ + 2QS′′)), that is, detH ∝
S3S′ (PP )′ or detH ∝ S2 (WW )′. Then detH 6= 0 unless fundamental
conditions are imposed. In all other cases, when F,P

(
P2 +Q

)
− PF 6= 0,

vanishing of the Hessian determinant is equivalent to vanishing of the Ja-
cobian determinant (if F − PF,P = 0 then WW = M 2`2PP , which is
unphysical).

The above observations lead to the central conclusion that a dynamical
system defined by action (4.1) is defective when it is fundamental, since then
detH = 0 (the implications of condition detH = 0 will become clear later).

Hamilton actions of the fundamental systems corresponding to the pre-
viously found solutions read, respectively,

S = −M

∫
dτ
√
ẋẋ

√√√√[1− (k̇ẋ)(k̇ẋ)
(ẋẋ)(k̇k̇)

][
1±

√
−`2 k̇k̇

(kẋ)2

]
(4.3)

and

Sν=−M
∫
dτ
√
ẋẋ


√√√√1±

√
−`2 k̇k̇

(kẋ)2
+ν2 `2

k̇k̇

(kẋ)2
+ν`

k̇ẋ

kẋ
√
ẋẋ

 . (4.4)

In contrast to dynamical system defined by (4.3), which has 6 dynamical
degrees of freedom, the system defined by action (4.4) must be treated as
having only 5 dynamical degrees of freedom, since the magnitude of null
vector k in this case is a gauge variable. Indeed, for any function ψ(τ)

Sν [x, eψk] = Sν [x, k]−M ` ν ψ(τ) .

Since the Lagrangians corresponding to actions Sν [x, eψk] and Sν [x, k] differ
by a total derivative, the form of equations of motion is left unchanged. This
means that the magnitude of null vector kµ separates completely from the
dynamics of other degrees of freedom and does not influence them at all,
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therefore it can be completely ignored. As a result, the dynamical system
defined by action (4.4) depends on position and a null direction only, simi-
larly as the fundamental relativistic rotator. The rank of Hessian matrix for
action (4.4) equals 4 (which is less than the number of dynamical degrees of
freedom even when the magnitude of kµ is not taken into account).

What the defectiveness of the found fundamental systems means in prac-
tice? Firstly, it should be recalled that the necessary condition for the exis-
tence of Hamiltonian mechanics for a dynamical system described by a gen-
eral Lagrangian L(v, q) depending on generalized coordinates q and veloc-
ities v compatible with constraints, is that for fixed q the set of equations
p(v, q) = ∂L

∂v (q, v) defining momenta p, should be a diffeomorphism of spaces
of momenta p and of velocities v. In particular, this set of equations should
be uniquely solvable for velocities, v = v(q, p). This is possible, provided
that the following Hessian determinant is nonzero

det
[
∂2L

∂q̇i∂q̇j

]
6= 0 ,

otherwise the Legendre transform leading from the Lagrangian to the Hamil-
tonian would not be well defined. Secondly, the above condition can be
equivalently viewed as necessary for unique dependence of accelerations on
the initial data. The Euler–Lagrange equations for L can be recast in the
general form

∂2L

∂q̇i∂q̇j
q̈j = Z(q, q̇, t) ,

with some function Z. Therefore, the vanishing of the Hessian determinant
would not only mean that accelerations could not be algebraically deter-
mined from the positions q and their derivatives, but also that equations
of motion could not be reduced to the canonical form ẏ = F (y, t), where
y = (q, q̇), for which the general textbook results on the existence and
uniqueness are derived for solutions of ordinary differential equations.

4.1. Singular motion of fundamental relativistic rotator

It is best to illustrate the consequences of vanishing of Hessian determinat
with the behavior of the fundamental relativistic rotator.

The action of fundamental relativistic rotator [1] is obtained from (4.4)
by taking the formal limit ν → 0

Sν=0 = −M

∫
dτ
√
ẋẋ

√√√√1 +

√
−`2 k̇k̇

(kẋ)2
. (4.5)
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The same action was obtained earlier in quite a different context in [5] as
a geometrical model of a spinning massive particle.

Free motion of the rotator has been found in a fully covariant form in [2].
Its parametric description reads

xµ(t) =
Pµ

M
t+

`

2
rµ(t) + xµ(0) , kµ (t) =

Pµ

M
+

ṙµ(t)√
−ṙ(t)ṙ(t)

, (4.6)

where

rµ(t) = Nµ sinφ(t) +
εµναβNνWαPβ

1
2M 3`

cosφ(t) .

Constant vectors Pµ,Wµ andNµ satisfy the following conditions PP = M 2,
WW = −1

4M 4`2, WP = 0, NN = −1, NW = 0, and NP = 0. Pµ is the
(conserved) momentum of the center of momentum frame, t is the proper
time in this frame, and Wµ is the (conserved) spin pseudovector.

Function φ(t) describes the angular position of the “pointer” kµ(t) in the
center of momentum frame. The angular velocity with which kµ moves on
the unit sphere of null directions in this frame is∣∣∣∣ dφdt

∣∣∣∣ = 2
`

tanhΨ , e2Ψ ≡

√
−`2 k̇k̇

(ẋk)2
+ 1 .

This function is such that 0 < |φ̇(t)| < `
2 and otherwise arbitrary. For a well

behaving dynamical system, φ(t) would be a linear function of parameter t.
From the physical standpoint this arbitrariness of φ(t) is unacceptable, since
it would mean that a dynamical system could accelerate or decelerate at
will without apparent cause. Putting this differently, function φ(t) is not
determined uniquely from equations of motion and initial conditions. In
this sense, fundamental relativistic rotator is not a deterministic dynamical
system. One expects that motion of fundamental dynamical systems defined
by actions (4.3) and (4.4) is similarly defective.

This indeterministic behavior originates neither from reparametrization
invariance of action (4.5) nor its invariance with respect to rescaling of the
null vector kµ by arbitrary function. This arbitrariness is inherent in the
particular form of the Hamilton’s action of the fundamental relativistic rota-
tor. For example, the Hessian calculated for 5 dynamical degrees of freedom
(the amplitude of kµ is not taken into account) of the dynamical system
defined by action

S = −M

∫
dτ
√
ẋẋ f(Q) , Q = −`2 k̇k̇

(kẋ)2
,
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reads [2]

detH5d.o.f. = Kf(Q)3f ′(Q)2
(

1 + 2Q
(
f ′(Q)
f(Q)

+
f ′′(Q)
f ′(Q)

))
,

K,f ≡ 0 .

It is nonzero for arbitrary nonconstant function f(Q) different from func-
tion c1

√
1 + c2

√
Q (c1 = 1 and c2 = ±1 to have PP = M 2 and WW =

−1
4M 4`2). For such fs one obtains deterministic systems (in the sense that

detH 6= 0), however, not fundamental — their mass and spin are functions
of initial conditions.

5. Summary

The requirement that Casimir invariants of the Poincaré group should be
parameters rather than constants of motion, implies indeterministic behavior
of classical dynamical systems described by position and a single null vector.
In particular, this concerns the fundamental relativistic rotator.

Ideal classical clocks, if exist, must be more complicated devices. For
more complicated systems, it seems improbable that satisfaction of funda-
mental conditions would always imply ill-posedness of the Cauchy problem.
It is therefore necessary to find a counterexample.

For that purpose, one can consider dynamical systems consisting of a sin-
gle spinor interacting with its worldline. In this work it has been shown how
to construct the Lagrangian for such a system. The system is described by
three Lorentz scalars, thus more than the number of Casimir invariants of
the Poincar’e group. One, therefore, expects to have no similar correspon-
dence between vanishing of Hessian determinant and functional dependence
of Casimir invariants as that observed for systems described by action (4.1)
with two Lorentz invariants. It would be also interesting to show in general
whether or not fundamental dynamical systems with two Lorentz scalars
have always vanishing Hessian determinant.

The existence of deterministic fundamental dynamical system consisting
of a worldline and a single spinor is still an open question. However, I have
already found an indication that action

S [x, κ] = −M

∫
ds
√
ẋẋF

(
−`2 k̇k̇

(kẋ)2
, `

(aẋ)(bk̇)− (ak̇)(bẋ) + (aḃ)(kẋ)
kẋ
√
ẋẋ

)
leads to at least one family of fundamental systems with vanishing Hessian
determinant. It seems that to find a deterministic and fundamental system
with spinor one needs to consider full Hamilton action (3.1) which is a very
challenging endeavor.
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