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Oscillons are well localized, almost periodic and surprisingly long living
states in classical field theories. We present a short overview of their basic
properties and dynamics in 1 + 1 dimension. During collisions with kinks
they behave as massive bodies which can reflect the kink or increase kink’s
kinetic energy. Oscillons can also undergo so-called negative radiation
pressure.

PACS numbers: 11.10.Lm, 11.27.+d

1. Introduction

Recent years have brought much attention to long lived, quite localized
and almost periodic solutions which can be encountered in various relativistic
scalar field theories [1]. This objects reveal many properties of breathers
from integrable models like sine-Gordon. However, in contrary to breathers,
oscillons loose energy due to nonlinear radiation and finally vanish. Their
lifetime is surprisingly long, compared to specific time scale in a given theory.
Oscillons can be created from generic initial conditions in generic scalar field
theories. Their existence is, therefore, of great importance in case of many
relaxation problems as well as phase transitions and perhaps even quantum
fluctuations.

Early papers were mostly focused on stability of oscillons in multidimen-
sional φ4 model. The lifetime of oscillons created from Gaussian initial con-
ditions was measured. It highly depended on dimensionality of space-time.
In three spatial dimensions the oscillons could live up to 104 oscillations,
loosing its energy very slowly. During that time the frequency of these oscil-
lation raised until it reached a certain critical value. Than a relatively fast
decay of the oscillon was observed. In two spatial dimensions the oscillons
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could live some 102 or even 104 times longer. A very interesting thing which
was found was the fractal dependence of the lifetime of the oscillons and the
width of initial Gaussian [2]. In the plots of a lifetime against the width of
initial Gaussian, sharp picks could be observed, revealing that some initial
data could give rise to oscillons with exceptional long lifetime. The struc-
ture of the pick revealed also the feature of selfsimilarity. 1 + 1 dimensional
oscillons lose their energy very slowly and no final fast decay was observed.

More recent papers focused on emergence of oscillons in different theo-
ries and from different initial data. For example oscillons were observed in
abelian and non-abelian Higgs model. In all cases the presence of massive
scalar field seems to essential. Oscillons could be created as a result of col-
lision of topological defects (kink–antikink or vortex–antivortex) [3]. They
can be also created form thermal fluctuations. It is also worth to empha-
size that in case of thermal fluctuations a synchronization between created
oscillons was observed.

In our paper we present some of the features of the oscillons widely
discussed in literature and stress out some unexpected preliminary results
of our own work. Our results in more detail will be publish in future papers.
First we present a basic mathematical description of these objects, their
structure and radiation created by oscillations. The following section is
focused on collision between an oscillon and a kink in the φ4 theory. Next
we describe the possibility of so called negative radiation pressure in case of
oscillons. The presented mechanism responsible for this phenomenon could
be generalized to other oscillating object such as a floating body.

2. Oscillons

As we stressed out in the introduction oscillons can be observed in various
nonlinear scalar field theories. One of the simplest example, very often
studied is the φ4 model described by following Lagrangian:

L = 1
2 ∂µφ∂

µφ− 1
2

(
φ2 − 1

)2
. (1)

In this model there are two vacua φv = ±1. In 1 + 1 dimensions (or more
precisely when ∂yφ = ∂zφ = 0) this model reveals also the famous kink and
anti-kink solutions

φk = ± tanhx . (2)
In papers [4, 5] the authors observed oscillating objects which were created
from low velocity collisions of kink–antikink pair. These objects were later
identified as oscillons. Therefore, in some sense oscillons can be interpreted
as a bound state of topological defects. Numerical simulation of evolution
of gassian initial conditions:

φ(x, t = 0) = 1− 0.4 exp(−0.5x2) , φ̇(x, t = 0) = 0 (3)
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Fig. 1. Field value at the mass center for initial conditions φ(x, t = 0) = 1 − 0.4
× e−0.5 x2

. Relatively fast decay is visible.

showed that the Gaussian is a large source of radiation and very quickly
looses its amplitude and shape (Fig. 1). This is not a surprise because small
perturbation from the vacuum φ = 1+u solution can be linearized obtaining
Klein–Gordon equation

utt − uxx − 4u = 0 . (4)

It is well known that each solution can be expressed as a superposition
of traveling waves uk(x, t) = cos(kx + ωt), where k = ±

√
ω2 − 4 is a wave

number. Therefore, no localized stationary oscillating solutions are possible.
The remaining oscillation at the center will tend from above to the threshold
frequency ωtr = 2. However, time evolution of a Gaussian with the same
amplitude but different width:

φ(x, t = 0) = 1− 0.4 exp(−0.1x2) , φ(x, t = 0) = 0 (5)

is very different. The oscillating object is now a very small source of radia-
tion (Fig. 2), and after thousand oscillations the amplitude changes almost
insignificantly. Moreover, the measured frequency of these oscillations is
ω = 1.90 which is significantly below the mass threshold ωtr. This shows
that nonlinearities are crucial in this example. For given height of the Gaus-
sian there is one value of width for which the evolution leads to almost
periodic, metastable state.

The later solution resembles many similarities to breathers known from
the sine-Gordon theory described by equation:

φtt − φxx = sinφ . (6)
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Fig. 2. Field value at the mass center for initial conditions φ(x, t = 0) = 1 − 0.4
× e−0.1 x2

. Decay is almost invisible.

Sine–Gordon is a very unusual equation and the solution describing breather
can be found in an exact form:

φc(x, t) = −4 arctan

 c√
1− c2

sin
(√

1− c2t
)

cosh cx

 . (7)

In φ4 finding such an expression is not possible. One of the methods to find
the solution of an oscillon is to make a Fourier decomposition of the solution:

φ(x, t) = 1 +
∑
n

un(x) cosnΩt . (8)

After plugging this ansatz into the φ4 equation one obtains a system of
ordinary differential equations:

∆un + (n2Ω2 − 4)un = Fn(u0, u1, . . .) , (9)

where

Fn(u0, u1, . . .) = 3
∑
m,p

(δn,m+p + δn,m−p)umup

+ 1
2

∑
m,p,k

(δn,m+p+k + δn,m−p+k + δn,m+p−k + δn,m−p−k)umupuk . (10)

Oscillon is a symmetric solution. This sets N conditions. It also radiates
very slowly, therefore, the next conditions would be to minimize the outgo-
ing radiation. Only for integrable systems, such as sine-Gordon model, one
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Fig. 3. First Fourier constituents of an oscillon. Note that the radiation tail is
invisible in this scale.

can completely get rid off the radiation (or more precisely the Fourier con-
stituents vanish exponentially). In φ4 we can only minimize this radiation.
The obtained solution is periodic in time but because of this radiation tail
it has infinite energy. Moreover, the series is asymptotic, therefore, only the
first few elements can be taken into account. The profiles were also found
analytically using perturbation method with parameter ε = 2 − Ω. Some
mathematical tricks can also give a decent evaluation of the outgoing radia-
tion amplitude. Kruskal and Segur [6] showed (and later Forgacs et al. [7,8]
proved more rigorously), that in 1 + 1d φ4 the energy of the oscillon changes
with time as

E(t) ∼ (ln t)−1 (11)

for large values of t.

3. Oscillon interactions

Oscillons live for relatively long time in comparison to characteristic time
in a given theory ∼ 1/m.

If some phenomenon lasts much shorter than the lifetime of the oscillon
we do not need to consider its radiation and asymptotic stability. These
phenomena include collisions, phase transitions and interaction with waves.
In sine-Gordon theory breathers interact with other objects elastically due
to the integrability of the theory. Oscillons do not interact elastically.

3.1. Collisions with kinks

We have studied collisions between a stationary oscillon which was hit
by a kink. Similar problem was previously studied by Hindmarsh in [9] when
an oscillon hit a domain wall in 2+1 dimensions. Our numerical simulations



616 T. Romańczukiewicz

showed that in 1+1 dimensions the situation differs significantly from the one
described in [9]. The difference comes from the fact that in 1+1 dimensions
both a kink and an oscillon are particle-like quite well localized objects and
their energies can be of the same order. In 2 + 1 dimensions oscillon is
a cylindrically symmetric particle-like object while domain walls are more
string-like objects which carry nonvanishing energy density along some line
in a plane. Domain wall has, therefore, more energy than oscillon.

Hindmarsh showed that during the collisions some part of the oscillon
can go through the domain wall but some part of the oscillon is reflected.
This reflected part is also an oscillon but with much smaller amplitude. Due
to the difference in mass of these objects the change in motion of the domain
wall was negligible.

We studied a similar problem in but 1 + 1 dimensions. A moving kink
collided with a stationary oscillon. Initial conditions were

φ(x, t = 0) = A exp(−ax2) + tanh (γ(x− x0 − vt)) (12a)

and
φt(x, t = 0) = − vγ

cosh2 (γ(x− x0 − vt))
. (12b)

For small velocity collisions (v < 0.18) the kink was reflected from the
oscillon (Fig. 4). During the collision some radiation was emitted. In φ4 the
kink has one linearized so-called oscillational (or shape) mode, which was
also excited during the collision. This result is very different from the similar
process in sine-Gordon equation (collision of a kink and a breather). Due
to the integrability of sine-Gordon equation only perfectly elastic collision
are possible. There cannot be any radiation emitted during such process.

Fig. 4. Low velocity collision. Kink is reflected from the oscillon.
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Moreover, since the breather can be interpreted as a bound state of kink
and antikink the final state looks as if the colliding kink went through the
breather without almost any interaction. After the collision the breather
was slightly moved but remained motionless and the kink is moving with
the same velocity.

Higher velocity collisions in φ4 model gave also some interesting results
(Fig. 5). For certain range of velocities, the kink after the collision was
moving faster than before the collision (Fig. 6). For ultra-fast collisions the
kink could move faster or slower than before the collision depending on the
initial phase of the oscillon. In Fig. 5 a shadowed region indicates all possible
values of final velocity of the kink. For velocities between 0.18 and 0.40 kink
always gain kinetic energy. These results mean that during the collisions
oscillon can transform some of its oscillating energy into kinetic energy.
So, in a sense, they could behave similarly to a rotating body.

Fig. 5. Collision for higher velocity—after collision the kink gains kinetic energy.

This could be qualitatively described by effective theory using only few
degrees of freedom: a position of the kink X(t) and a position of the oscil-
lon Y (t). For small amplitude oscillon, we can assume that only the basic
frequency dominates so we can neglect the rest of the harmonics. Our last
degree of freedom would be the amplitude of the oscillon A1(t). We assume
that the profile of the oscillon does not change with time. This obviously
is not true since amplitude and width of the oscillon are dependent, but we
want to give only a qualitative description.

We can write the field as

φ(x, t) = ψ (x−X(t))+A1(t)Φ (x−Y (t)) + higher harmonics + radiation .
(13)
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Fig. 6. Kink velocity after collision vf versus kink initial velocity vi.

Substitution to the Lagrangian gives

L = Lk + Losc + Lint ,

where

Losc =
m

2

(
Ȧ2 −

(
4 +

M

m

)
A2

)
− γ3A

3 − γ4A
4 + 1

2 A
2MẎ 2 ,

For slow kink:
Lk = −1

2 MkẊ
2

and the interaction part:

Lint =
∫
dx AẎ ẊΦ′Ψ ′−ȦẊΦΨ ′−3A2Φ2Ψ2−2A3Φ3Ψ−2AΦΨ3+2AΦΨ . (14)

After integrations we obtain a system of equations which gives similar results
as the full PDE such as the gain of velocity, the maximal reflection velocity
and phase dependence.

3.2. Negative radiation pressure

We have also studied an interaction between an oscillon and a planar
wave in φ4 model. Oscillon can serve as a simple example of oscillating ob-
ject interacting with radiation like Q-Ball or a floating body. We found out
that in special case the oscillon can undergo a negative radiation pressure
that is instead of being pushed by radiation it is being pulled towards the
source of the radiation. In Fig. 7 we have plotted a measured (during nu-
merical simulations) acceleration of an oscillon (with basic frequency being
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Fig. 7. Measured acceleration of an oscillon in a presence of travelling wave.

Ω = 1.7) under influence of a wave travelling from +∞ with the same ampli-
tude A = 0.1. Negative values of the acceleration indicates that the oscillon
was moving in the same direction as the wave. In other words the oscillon
was pushed by the radiation. Positive values indicates that the oscillon was
accelerating in posite direction — it was pulled by the radiation towards the
source of radiation. This is an example of the negative radiation pressure.
From the figure one can clearly see that the positive radiation pressure was
observed for small frequencies close to the mass threshold (ωtr = 2) and
above some ω = 4.5. One can also notice many resonances, especially in
lower part of the spectrum. One of the largest resonances is seen around
ω = 3.4 which can be identified with 2Ω. This phenomenon of the negative
radiation pressure was also described and explained for φ4 kink [10]. Also
it was numerically seen in case of relativistic vortices in Goldstone’s and
abelian Higgs models. Until now two mechanism of negative radiation pres-
sure were presented: nonlinear selfinteracting field (φ4) and in case of two
(or more) interacting fields with different masses (vortices, toy model) [11].
In those mechanisms an incoming wave, due to the interaction with an ob-
ject, transforms part of its energy into modes carrying more momentum.
In φ4 kink, in the first order of wave amplitude, is transparent and higher
nonlinear corrections must be taken into account to find the force, which
radiation exerts on the kink. A wave with twice the frequency of incident
wave is created due to the nonlinear term φ2 in the equation. Knowing the
dispersion relation one can calculate that the force pushes the kink towards
the source of radiation.

A different mechanism stands behind the negative radiation pressure in
case of vortices. Lagrangian in Goldstone’s model can be written as

L = 1
2 ∂µφ

∗∂µφ− 1
2 (φ∗φ− 1)2 . (15)
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The potential has a form of so-called Mexican Hat. The vacuum manifold
is a circle |φ| = 1. Changing the field along this vacuum manifold costs no
potential energy and small excitation of such type is a massless Goldstone’s
mode. Excitation in perpendicular direction costs potential energy and can
be called massive amplitude’s mode. An interaction of these two types of
fields can result in surplus of momentum behind a vortex. This happens
in case when a vertex is hit with an amplitude wave and one can observe
a negative radiation pressure. When the vortex is hit with a Goldstone’s
wave it experiences positive radiation pressure. This mechanism was much
more clearly presented on a toy model [11]. We believe that this case can
be the most frequent example of NRP it should be observed in real physical
situations.

Oscillons provide a third mechanism which is responsible for the negative
radiation pressure.

This phenomenon can be understood in the following way:
A wave ξ with certain frequency ω hits an oscillon which oscillates with
frequency 0, Ω, 2Ω, . . . . Due to the nonlinear interaction (φ2, φ3) modes
with frequencies ωnm = nω +mΩ,n,m ∈ Z appear.
Suppose that Ω/ω is not a rational number (to avoid resonances). For small
amplitude of the wave we can linearize the equation obtaining

ξtt − ξxx + [V0(x) + V1(x) cosΩt+ V2(x) cos 2Ωt+ · · · ] ξ = 0 , (16)

where the Vi(x) are functions of um. The most dominating part is V1 so
neglecting the rest we obtain

ξtt − ξxx + V1(x) cosΩt ξ = 0 .

The solution can be sought in the following form:

ξ =
∑
m

ξm(x) ei(ω+mΩ)t

which leads to the following set of equations:[
− d2

dx2
− (ω +mΩ)2

]
ξm + 1

2 V1(x) (δn,m+1 + δn,m−1) ξn = 0 , (17)

which can be solved with two-point boundary conditions (for some large |x|).
We want only one wave going towards the oscillon (for frequency ω),

and the rest should be going outwards. What we could expect is that the
most dominating waves will have frequencies ω ±Ω, but if ω −Ω would be
below the mass threshold the wave with such frequency cannot propagate.
For such frequencies we set vanishing boundary conditions.
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Generally, it is easier to create a wave propagating in the same direction
as the initial wave.

If two waves carry the same amount of energy, the one with higher fre-
quency carries more momentum. Therefore, the wave with frequency Ω+ω
would carry more momentum than the wave with frequency ω. This leads
to creation of momentum surplus behind the oscillon and a force pushing
the oscillon towards the source of radiation — an example of the negative
radiation pressure

However, if ω−Ω is larger than the mass threshold than the dominating
frequency would be ω−Ω which is smaller than ω and the waves created with
this frequency would have less momentum than the initial waves. The lack of
the momentum must be compensated with increase of oscillon momentum,
this time in the direction agreeable with the initial wave.

Numerical simulations of the full PDE as well as the solution to the
system of equations 17 are in agreement with above considerations. The
above procedure neglected resonances which are especially important for
low frequencies and can even change the sign of the acceleration.

4. Conclusion

In the present paper we have presented some preliminary results con-
cerning dynamics of oscillons. We have shown that during collisions with
kinks, oscillons behave like massive bodies. Contrary to breathers, oscillons
do not collide elasticly. Sometimes a kink can be reflected back from the
oscillon. For higher velocity collisions a kink can take some of the oscillating
energy from the oscillon.

Oscillons also can undergo the negative radiation pressure. A presence of
basic frequency of the oscillon is crucial. During interaction with monochro-
matic wave a whole ladder of frequencies is created. The largest amplitudes
have waves with frequency being a sum and a difference of the basic fre-
quency of the oscillon and on the initial wave. If the difference is below the
mass threshold that wave cannot propagate and the only dominant wave
is the one with frequency being the sum.This wave could carry more mo-
mentum the the initial wave brought and the motion of the oscillon must
compensate this. This leads to the appearance of the negative radiation
pressure. For larger frequencies also the second wave could propagate and
change the sign of the force exerted on the oscillon.

This mechanism of negative radiation pressure could be possible in case
of other oscillating objects in theories with mass gap.
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