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In this article we present the cut Fock space approach to theD=d+1=2,
Supersymmetric Yang–Mills Quantum Mechanics (SYMQM). We start by
briefly introducing the main features of the framework. We concentrate on
those properties of the method which make it a convenient set up not only
for numerical calculations but also for analytic computations. In the main
part of the article a sample of results are discussed, namely, analytic and
numerical analysis of the D = 2, SYMQM systems with SU(2) and SU(3)
gauge symmetry.

1. Introduction

Supersymmetric Yang–Mills Quantum Mechanics (SYMQM) turned out
to be not only a class of supersymmetric systems possessing some interesting
physical features, but also to play an important rôle in many areas of theoret-
ical physics. Among the problems where SYMQM are relevant, the two most
notable examples are: their relation to a particular limit of M-theory [1], and
the description of regularized dynamics of relativistic quantum membranes
and supermembranes [2, 3]. Hence, an efficient way of investigating the
spectra of SYMQM with various gauge groups and defined in spaces with
different dimensionality would be of importance.

In short, D = 2, SYMQM are supersymmetric, D = 2 dimensional,
Yang–Mills quantum field theories reduced to one point in space. Therefore,
the original local gauge symmetry is transformed into a global symmetry
of the quantum mechanical system. The difficulty of solving these systems
even in the simplest cases comes from the singlet constraint which is the
remnant of the Gauss law.
∗ Seminar presented at the XLIX Cracow School of Theoretical Physics, “Non-pertur-
bative Gravity and Quantum Chromodynamics”, Zakopane, May 31–June 10, 2009.
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The cut Fock space approach [4] was proposed few years ago as a non-
perturbative way of investigating numerically the SYMQM systems. The
energy eigenstates are constructed as linear combinations of physical basis
states and thus are gauge invariant by construction. The approach allowed
the calculation of low lying eigenenergies and their eigenstates through a nu-
merical diagonalization of the Hamiltonian matrix. Its main application was
the study of D = 2, SYMQM [5–7], but it was also generalized to the D = 4
case [8]. In principle, the method can be used in numerical investigations
of systems with any gauge group and in any dimension. Nevertheless, we
would like to stress in this article that it is also convenient for analytic treat-
ment. The cut Fock space approach provides a systematic way of controlling
the Fock basis in terms of which the energy eigenstates can be decomposed.
As an example, we will present such decomposition of the solutions for two
simple systems.

The paper is composed as follows. We start by briefly describing the
cut Fock space approach, concentrating on the construction of the Fock ba-
sis. Then, we present the numerical algorithm together with the numerical
spectra of the D = 2, SYMQM with SU(3) gauge group in the sectors with
nF = 0 and nF = 2 fermionic quanta. In the third part of the paper, we de-
rive analytically the bosonic solutions of the D = 2, SYMQM Hamiltonians
with SU(2) and SU(3) gauge groups. We conclude by indicating possible
directions of further studies.

2. The framework

For the reasons of simplicity the framework will be presented in the
context of D = 2, supersymmetric Yang–Mills quantum mechanics with
the SU(N) gauge group. Nevertheless, the method is more flexible and
systems with other gauge groups as well as in higher dimensional spaces
can be studied. Particularly, creation and annihilation operators introduced
in the following subsection can be labeled by additional spatial indices and
transform in some representation of the SO(d) group.

2.1. Basic degrees of freedom

A two-dimensional SYMQM system is described [9] by a bosonic variable
φA and a complex fermion λA, where A is a color index. Being remnants
of the gauge field in the original field theory, the bosonic and fermionic
variables transform in the adjoint representation of the SU(N) group. Thus,
the system contains N2−1 bosonic and N2−1 fermionic degrees of freedom.

The characteristic feature of SYMQM is that its Hilbert space is com-
posed of states invariant under the SU(N) group. We would like to incorpo-
rate this constraint in the approach from the beginning. Hence, we introduce
a matrix notation, in which any singlet can be written in terms of traces of
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appropriate matrices [10]. We define

φi,j =
N2−1∑
A=1

φAT
A
i,j , πi,j =

N2−1∑
A=1

πAT
A
i,j ,

f †i,j =
N2−1∑
A=1

f †AT
A
i,j , fi,j =

N2−1∑
A=1

fAT
A
i,j ,

where TAi,j are the generators of the SU(N) group in the fundamental rep-
resentation, i, j = 1, . . . , N . Now, all operators become operator valued
matrices. Particularly, the gauge-invariant occupation number operators
can be defined as

Tr
(
a†a
)

=
N2−1∑
A=1

a†AaA , Tr (f †f) =
N2−1∑
A=1

f †AfA , (1)

where we have introduced standard commuting creation and annihilation
operators a†A, aA defined by φA = 1√

2
(aA+a†A) and πA = 1

i
√

2
(aA−a

†
A). The

sum over the adjoint indices ensures the invariance of these operators under
the SU(N) transformations.

In the following we will consider theD = 2, SYMQM systems with SU(2)
and SU(3) gauge groups. Their Hamiltonians read, respectively, [9],

H = 1
2 πAπA = Tr

(
a†a
)

+ 3
4 −

1
2

(
Tr (a†a†)− Tr (aa)

)
, (2)

H = 1
2 πAπA = Tr

(
a†a
)

+ 2− 1
2

(
Tr (a†a†)− Tr (aa)

)
. (3)

2.2. Fock basis

The fundamental part of the approach is a systematic and recursive con-
struction of the Fock basis. Fock states are eigenstates of some occupation
number operators, and in the case of SYMQM models, we choose them to
be eigenstates of the gauge-invariant occupation number operators Eq. (1).

It is convenient when the Fock basis states can be labeled by as many
quantum numbers conserved by the Hamiltonian as possible. Hence, since
for most of systems the fermionic occupation number is conserved, one usu-
ally constructs the Fock basis independently in each subspace of the Hilbert
space with a definite fermionic occupation number. As far as the bosonic
occupation number is concerned, it is in general not conserved. Neverthe-
less, we will further divide the fermionic sectors into subspaces with a given
number of bosonic quanta, in order to facilitate the recursive approach.



626 P. Korcyl

In the following we introduce the concept of bosonic elementary bricks,
which are necessary to obtain the Fock basis in the bosonic sector. Then,
we will proceed in full analogy with the fermionic sectors.

2.2.1. Bosonic elementary bricks

We define the set of bosonic elementary bricks as the set of N linearly
independent single traces of bosonic creation operators. Traces with more
than N − 1 operators can be reduced by the Cayley–Hamilton theorem.
Table I contains examples of such sets for N = 2, N = 3 and N = 4.

TABLE I

Elementary bosonic bricks for SU(2), SU(3) and SU(4).

SU(2) SU(3) SU(4)
Tr (a†a†) Tr (a†a†) Tr (a†a†)

— Tr (a†a†a†) Tr (a†a†a†)
— — Tr (a†a†a†a†)

Let us consider the set of states1{
(a†2)k2(a†3)k3 . . . (a†N )kN |0〉

}PN
j=2 jkj=nB

≡
∣∣{nB

}〉
(4)

composed of the products of powers of elementary bosonic bricks acting on
the Fock vacuum. One can show [7] that it spans the subspace of the Hilbert
space with nB bosonic quanta. In Eq. (4), we introduced a generalized
notation in which |

{
nB

}
〉 is a vector of all states with nB quanta.

Suppose that we have constructed such basis up to sectors containing less
than nB bosonic quanta. The Fock basis in the sector with nB bosonic quanta
can be build as the sum of all states obtained by the action of appropriate
bricks on the already generated Fock basis states. Using the generalized
notation this can be written in a compact form as

∣∣{nB

}〉
=

N∑
k=2

(a†k)
∣∣{nB − k

}〉
.

Note that the same state may appear in several copies, differing in the
order of successive bricks used to build it. The basis is obtained once this
redundancy is removed and the remaining states orthonormalized.

1 We adopt here the notation in which (X) designs Tr (X). We will use this notation
only when it is self-evident.
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2.2.2. Fermionic bricks

In order to obtain the Fock basis in the fermionic sectors we must define
bricks which contain fermionic creation operators. The set of elementary
fermionic bricks can be defined in full analogy to the set of elementary
bosonic bricks. We, thus, consider all single traces with nF fermionic cre-
ation operators, which cannot be further reduced by the Cayley–Hamilton
theorem. Subsequently, such set of elementary fermionic bricks must be
enlarged by operators, which are products of fermionic elementary bricks
with smaller number of fermionic quanta and contain nF fermionic creation
operators in total. The inclusion of these composite operators ensures that
all possible invariant contractions of nF fermionic and some bosonic cre-
ation operators are taken into account. The enlarged set is called the set of
composite fermionic bricks. Its elements will be denoted by C†(nB, nF, α),
where the first argument describes the number of bosonic creation operators
contained in C†, and the last argument is an additional label needed in the
cases where nB and nF are not enough to distinguish different operators.
Table II presents the set of composite fermionic bricks for the SU(3) gauge
group. In analogy to the bosonic case, we can define the set of states,

{
C†(n, nF, α)

(
a†2
)k2 (

a†3
)k3

. . .
(
a†N

)kN
|0〉
}PN

j=2 jkj+n=nB

≡
∣∣{nB, nF

}〉
,

(5)

which after orthonormalization will give the basis in the subspace of Hilbert
space with nB and nF bosonic and fermionic quanta, respectively.

TABLE II

Fermionic SU(3) bricks.

F = 1 F = 2 F = 3 F = 4

(f†a†) (f†f†a†) (f†f†f†) (f†f†f†f†a†)
(f†a†a†) (f†f†a†a†) (f†f†f†a†) (f†a†)(f†f†f†)

(f†a†a†f†a†) (f†f†f†a†a†) (f†f†f†f†a†a†)
(f†a†)(f†a†a†) (f†a†)(f†f†a†) (f†a†a†)(f†f†f†)

(f†a†f†f†a†a†) (f†a†)(a†f†f†f†)
(f†a†)(f†f†a†a†) (f†f†a†)(f†f†a†)
(f†a†a†)(f†f†a†) (f†a†a†)(f†f†f†a†)
(f†a†a†)(f†f†a†a†) (f†f†a†)(f†f†a†a†)

(f†a†)(f†a†a†)(f†f†a†)
(f†f†a†)(f†a†f†a†a†)
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2.2.3. Correctness of the Fock basis

One can show that the sets of states Eqs. (4) and (5) provide indeed
a good basis of the Hilbert space. On one hand, its completeness follows from
the fact that the states constructed with powers of bosonic and fermionic
bricks represent the most general contractions of invariant tensors with cre-
ation operators. On the other hand, after removing the trivially linear de-
pendent states, the linear independence of the remaining ones can be check
explicitly by calculating the Gram’s matrix. Obviously, the rank of the
Gram’s matrix corresponds to the number of linearly independent states in
a sector with given nB and nF. Fortunately, there exists also an indepen-
dent way of calculating this number [11]. It exploits the orthogonality of the
characters of the SU(N) group, and can be used as a crosscheck that the
Fock basis obtained through the recursive construction spans correctly the
physical Hilbert space of SYMQM.

2.3. Extraction of approximate eigenenergies and eigenstates

Once the Hamiltonian operator is expressed as an operator function of
creation and annihilation operators, its action is straightforward in the Fock
basis. However, the numerical analysis requires an additional step, namely
the introduction of a cut-off Ncut (see Fig. 1) on the countably infinite Fock
basis. There are many ways to introduce such a cut-off depending on the
symmetries of the system. A practical cut-off is a limit on the total number
of quanta contained in the Fock basis states. Once the cut Hamiltonian
matrix is obtained, its eigenvalues correspond to an approximation of the

-5 5

-5

5

-5 5

-5

5

Fig. 1. Physical interpretation of the introduced cut-off. At finite cut-off the po-
sition and momentum operators have discrete spectra. As an example eigenvalues
of the pair of operators φ1 and φ2 as well as π1 and π2 are shown for different
cut-offs (Ncut = 5, 11 for the left and right figures). With increasing cut-off the
points become more and more dense and tend to cover a bigger area on the plane.
In the limit of infinite cut-off the operators have a continuum spectrum and the
whole plane is covered.
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eigenenergies of the quantum system, and its eigenvectors to the eigenstates.
Finally, calculations with several increasing Ncut have to be performed and
the physical results extracted from the limit of infinite cut-off. The proper-
ties of such a procedure were analyzed in [12–15], where a different behavior
of the eigenenergies corresponding to localized states and those correspond-
ing to nonlocalized states was observed. Therefore, the method offers a tool
to distinguish these two types of states, and we will indeed exploit this pos-
sibility when discussing the numerical results in subsection 3.2.

3. Numerical results

In this section we briefly describe a recursive algorithm which can be
used to efficiently evaluate the matrix elements of the Hamiltonian operator.
Then, we present the spectra of D = 2, SYMQM system with SU(3) gauge
group in the sectors with nF = 0 and nF = 2.

3.1. Recursive numerical approach

The recursive algorithm is based on relations connecting the desired ma-
trix element of an operator to simpler matrix elements of some other opera-
tors, which have been already evaluated at the earlier stage of calculations.
We will not describe here the full algorithm in details (for a full presenta-
tion of the approach see [16]). Instead, we will concentrate exclusively on
the bosonic sector and give one example of such recursive relation.

Let us now assume that we want to evaluate the matrix elements of
the normally-ordered operator O(nOB) between states containing nB and n′B
quanta, 〈

{
n′B
}
|O(nOB)|

{
nB

}
〉. The argument of O means that the difference

between the number of creation operators and the number of annihilation
operators is nOB . Therefore, the matrix elements 〈

{
n′B
}
|O(nOB)|

{
nB

}
〉 will

be nonzero only when n′B = nOB + nB. The strategy to evaluate a matrix
element of O is to drag O over the operators constituting the state |

{
nB

}
〉

so that O annihilates the Fock vacuum. We thus have〈{
n′B
}∣∣O(nOB)

∣∣{nB

}〉
=
(
〈
{
n′B
}
|
[
O(nOB), (a†p)

]
|
{
nB − p

}
〉

+ 〈
{
n′B
}
|(a†p)O(nOB)|

{
nB − p

}
〉
)
R(nB) , (6)

where the matrix R(nB) is obtained from the matrix of scalar products
S(nB) = 〈

{
nB

}
|
{
nB

}
〉, and is used to remove redundant basis vectors and

orthonormalize the remaining ones. Thus, R(nB) satisfies

RT(nB)S(nB)R(nB) = I ,
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where I is the unity matrix which dimension is equal to the size of the sub-
space of the Hilbert space withnB bosonic quanta.Note that we have expres-
sed the desired matrix element through Eq. (6) in terms of matrix elements
of operators between states with lower number of quanta, which should have
been already evaluated during some previous calculations. Hence, applying
successively such relation one can evaluate 〈

{
n′B
}
|O(nOB)|

{
nB

}
〉. One can

similarly organize the calculations in the fermionic sectors.

3.2. SU(3) model

As an application of the above algorithm we present the spectra of the
system given by the Hamiltonian Eq. (3). Figs. 2 and 3 contain the results
in the sectors with nF = 0 and nF = 2, respectively. We notice that in both
cases all eigenenergies fall down to zero. Thus, we can conclude that the
corresponding eigenstates are nonlocalized. It is a feature of the approach
that the eigenvalues corresponding to such states do not converge with the
increasing cut-off. Such behavior results from approximating a plane wave
by a finite set of localized harmonic oscillator eigenstates and its dependence
on Ncut can be parameterized in a power like manner. A precise procedure
for obtaining the correct infinite cut-off limit of the energy was described
in [12,13,15]. In particular, it was shown that the hyperbolic fall off contains
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Fig. 2. Dependence of the eigenenergies on the cut-off for the SU(3) model in the
nF = 0 sector.

information about the dispersion relation. Note that for a finite Ncut there
can be only a finite number of eigenenergies. With increasing Ncut more
and more new eigenvalues should appear on plots Figs. 2 and 3, in the limit
giving the continuum spectrum of a free system. In the next section we will
present analytic calculations which enable one to completely reconstruct the
above spectra, and thus provide a full understanding of their features.
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Fig. 3. Dependence of the eigenenergies on the cut-off for the SU(3) model in the
nF = 2 sector.

4. Analytic solutions

Our procedure to derive exact solutions for the D = 2, SYMQM models
consists in three steps. We decompose a general state |E〉 from the cut
Hilbert space in the Fock basis. In this step a convenient parametrization of
the Fock basis is necessary. Then, we translate the requirement that |E〉 is
an eigenstate of the appropriate Hamiltonian into a recurrence relation on
the decomposition coefficients. The last step is the solution of this recurrence
relation at finite cut-off and the investigation of the infinite cut-off limit of
these solutions.

Before we deal with the Hamiltonian (3), we will analyze a simpler
model with the SU(2) symmetry group, (2). The solution of the SU(2)
model was first found by Claudson and Halpern [9]. It can be obtained from
the generalized solutions of Samuel [17] and was also recently rederived by
Trzetrzelewski [7] by algebraic methods. This model is particularly simple
because the SU(2) group is isomorphic with the SO(3) group and can be
parameterized by spherical coordinates.

4.1. SU(2) model
4.1.1. Recurrence relation

At cut-off Ncut the general state from the bosonic sector can be decom-
posed as

|E〉 =
Ncut∑
j=0

aj(E) Tr (a†2)j |0〉 .

The eigenequation
H|E〉 = E|E〉 ,
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yields the recurrence relation for the aj(E) coefficients,

aj−1(E)−
(
2j + 3

2 − 2E
)
aj(E) + (j + 1)

(
j + 3

2

)
aj+1(E) = 0 , (7)

which can be solve analytically as will be discussed in the following subsec-
tions.

4.1.2. Finite cut-off solutions

One can show [18] that Eq. (7) admits Ncut + 1 solutions. The possible
eigenenergies are given by the zeros of an appropriate associated Laguerre
polynomial2,

L
1/2
Ncut+1(2E) = 0 .

For each E satisfying the above equation there exist an eigenstate with
Ncut + 1 decomposition coefficients are given by

aj(E) = a0Γ
(

3
2

)
L

1/2
j (2E) , 0 ≤ j ≤ Ncut ,

where a0 is some arbitrary constant.

4.1.3. Infinite cut-off solutions

In the infinite cut-off limit, Ncut → ∞, the set of possible eigenenergies
is given by the whole real positive axis. This reflects the fact that the
physical spectrum is continuous. Hence, for any real number E, there exists
an eigenstate of H which decomposition coefficients are given by

aj(E) = a0Γ
(

3
2

)
L

1/2
j (2E) , j ≥ 0 .

Therefore, the exact eigenstate can be written as,

|E〉 = a0Γ
(

3
2

) ∞∑
j=0

L
1/2
j (2E) Tr (a†2)j |0〉 .

2 Laguerre polynomials Lαn(x) are defined as the solutions of the differential equation

xy′′ + (α+ 1− x)y′ + ny = 0 ,

and the orthogonality relation

∞Z
0

Lαm(x)Lαn(x)xαe−xdx = δmn .

Lαn(x) denotes the Sonine polynomials related to Laguerre polynomials by

Lαn(x) =
1

Γ (α+ n+ 1)
Lαn(x) .
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4.1.4. Reconstruction of wavefunctions

In the case of the SU(2) model one can explicitly check the correctness
of the above solutions. Let us denote by ψn(r) the wavefunction in the
position representation of the n-th basis state. r is the radial variable which
parameterizes the SU(2) group manifold. Since we consider only SU(2)
invariant states, ψn(r) do not depend on angular variables. The n-th basis
state being the eigenstates of the gauge-invariant particle number operator
Tr
(
a†a
)
, its wavefunction satisfies the following equation

−1
2

(
d2

dr2
+

2
r

d

dr
+ 3− r2

)
ψn(r) = 2n ψn(r) .

Such equation can be solved yielding

ψn(r) = α(n) e−
r2

2 (−1)n22n+1n!L
1
2
n (r2) + βe−

r2

2
1
r

1F1

(
−2n+ 1

2
,
1
2
, r2
)
,

where α(n) is some constant depending on n and 1F1(a, b, z2) is the Kum-
mer’s function of the first kind. We are only interested in normalizable
solutions, therefore since the function 1

z 1F1(a, b, z2) is singular at z = 0, we
set β = 0. Thus, ψn(r) turns out to be the wavefunction of a three dimen-
sional harmonic oscillator carrying zero angular momentum. In order to find
explicitly the Claudson–Halpern solutions, we write the eigensolution with
energy E as

〈r|E〉 =
∞∑
j=0

〈r|Tr (a†2)j |0〉 〈0|Tr (a2)j |E〉

= a0Γ (3
2) e−

r2

2 φ(E)
∞∑
j=0

α(j)22j+1(−1)j j!

Γ(j+ 3
2)

L
1
2
j (2E)L

1
2
j (r2) ,

where φ(E) is some function of the variable E which was not determined by
the recursion relation Eq. (7). Choosing α(n) = 2−2j−1 and setting 2E = k2

we can use a known formula for the sum of products of associated Laguerre
polynomials of the same index [19],

∞∑
j=0

(−1)jj!
Γ (j + 3

2)
L

1
2
j (r2)L

1
2
j (k2) =

1
2

exp
(
k2 + r2

2

)
1√
ikr

I 1
2

(√
ikr
)
.

Next, by exploiting some properties of the Bessel functions [19], and setting
φ(E) = e−E , we can transform the above result into

〈r|E〉 =
a0

2
Γ (3

2)
√

2
π

sin(kr)
kr ,

which is, up to a multiplicative factor, the Claudson–Halpern solution of the
SU(2) model.
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4.2. SU(3) model
4.2.1. Recursion relation

We now decompose |E〉 in the Fock basis of the SU(3) model

|E〉 =
∑

2j+3k≤Ncut

aj,k(E) Tr (a†2)j Tr
(
a†3
)k
|0〉.

For |E〉 being an eigenstate, aj,kmust obey the following recursion relation [18]

aj−1,k −
(
2j + 3k + 4− 2E

)
aj,k + (j + 1)(j + 3k + 4)aj+1,k

+ 3
8(k + 1)(k + 2)aj−2, k+2 = 0 . (8)

Notice that the first three terms are diagonal in the k index and are similar to
the recurrence relation Eq. (7). The last term in Eq. (8) mixes the coefficients
with different values of the k index. However, coefficients aj,k with even
and odd k remain not related. Therefore, we can solve separately for the
amplitudes aj,2k and aj,2k+1.

4.2.2. Finite cut-off solutions

For reasons of clarity we consider here only the situation when the cut-off
Ncut is even and the solutions contain an even number, 2m, of cubic bricks
(a†3). The derivation of solutions with an odd number of cubic bricks is
similar.

It can be shown [18] that the solutions to Eq. (8) can be classified into
several separate sets. A solution belongs to the set fm if aj,k ≡ 0, k >
2m and aj,k 6= 0, k ≤ 2m. In words, this means that the eigenstate can
be decomposed into basis states containing at most 2m cubic bricks. f0

is the simplest set of solutions, for which only aj,0 are nonzero, i.e. is
only composed of bilinear bricks. Each set of solutions has its separate
quantization condition for the possible values of the E parameter.

We will now give the general form of solutions belonging to the set fm.
The set fm contains dm ≡ 1

2(Ncut − 6m) + 1 solutions with E such that
L6m+3
dm

(2E) = 0. They can be written as3 [18]

|E〉 =
dm∑
j=0

L6m+3
j (2E)

(
|j, 2m〉+

m∑
p=1

ΓE(m, p)|j + 3p, 2m− 2p〉
)

with

ΓE(m, p) =
m∏
t=p

−1
3

t(2t− 1)
(2m+ 1)2 − (2t− 1)2

.

3 We adopt a simplified notation in which
`
Tr (a†2)

´j `Tr (a†3)
´k |0〉 ≡ |j, k〉.
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In order to illustrate these formulas, let us present explicitly the solutions
from the sets f0 and f1. They read, respectively,

|E〉 = a0

d0∑
j=0

L3
j (2E)|j, 0〉,

|E〉 = a0

d1∑
j=0

L9
j (E)

(
|j, 2〉 − 1

24 |j + 3, 0〉
)
.

The new feature of the f>0 solutions is the degeneracy, which appears be-
cause several states can contain the same total number of quanta, i.e. the
equation 2j+3k = nB can have several solutions. Particularly, the degener-
acy of the states containing 6 quanta, namely |2, 0〉 and |0, 3〉 is responsible
for the structure of the solutions from the set f1. Fig. 4 demonstrates graph-
ically the structure of these solutions.

 0

 1

 2

 3

 4

 5

 0  1  2  3  4  5  6  7

k

j

Fig. 4. The structure of the solutions of the recursion relation Eq. (8). Each dot
represents a coefficient aj,k with appropriate values of the j and k indices. The
oblique, straight line denotes a cut-off with a fixed number of quanta, hereNcut =15.
The coefficients lying below and on this line are included in the Fock basis, whereas
coefficients lying outside are not. By increasing the cut-off we push this line to the
right and include more states into the cut Fock basis. The remaining lines represent
the sets of amplitudes of particular solutions of the recursion relation. The lowest,
dotted line corresponds to the solution involving only quadratic bricks i.e. the
solution from the set f0. The dashed triple represents a solution from the set f1.
The two horizontal parts of the triple denote the amplitudes aj,2 and aj,0. The
mixing of these amplitudes starts at the number of quanta equal to 6, i.e. both
the amplitudes a0,2 and a3,0 contain 6 quanta.
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The complete solution to the eigenvalue problem, i.e. the set of all
eigenstates

{
|E〉
}
is given by the union

{
|E〉
}

=

⌊
1
6
Ncut

⌋⋃
m=0

fm ∪

⌊
1
6

(
Ncut−3

)⌋⋃
m=0

gm , (9)

where gm are the corresponding sets of eigenstates with an odd number of
cubic bricks, and d′m their multiplicities. The spectrum, i.e. the set of all
values of the E parameter,

{
E
}
, for which a nonzero eigenstate exists, can

be written as

{
E
}

=

⌊
1
6
Ncut

⌋⋃
m=0

{
L6m+3
dm

(2E) = 0
}
∪

⌊
1
6

(
Ncut−3

)⌋⋃
m=0

{
L6m+6
d′m

(2E) = 0
}
. (10)

4.2.3. Infinite cut-off solutions

Eventually, one can show that the solutions retain their structure in the
infinite cut-off limit. The proof relies on the observation that the mixing
coefficients ΓE(m, p) do not depend on Ncut. Therefore, in order to obtain
the exact solution, the sum over j can be safely extended to infinity,

|E〉 =
∞∑
j=0

L6m+3
j (2E)

(
|j, 2m〉+

m∑
p=1

ΓE(m, p)|j + 3p, 2m− 2p〉

)
,

where E can be now any real number. Notice that in the limit Ncut → ∞
the number of separate sets of solutions fm will become also infinite.

5. Conclusions

In this paper we have described the cut Fock space approach to D = 2,
supersymmetric Yang–Mills quantum mechanics. We have briefly presented
the numerical algorithm as well as numerical results, namely the spectra
of the SYMQM system with the SU(3) gauge group in the bosonic and
nF = 2 sectors. Subsequently, we showed that the cut Fock space approach
is also a convenient framework for analytic calculations. We have derived
exact solutions for the SYMQM system with the SU(2) gauge group and
compared them with the original solutions of Halpern and Claudson. Then,
we have applied the method to the SU(3) SYMQM system and obtained the
spectra and eigenstates in the bosonic sector. Hence, for a given cut-off, one
can explain analytically all features of Fig. 2.
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Our analytic results can be extended in several directions. First of all, it
is possible to obtain recursive relations and solve them in all fermionic sectors
of the model with SU(3) gauge group. Obviously, an exact, complete solution
of this model enables one to calculate the Witten’s index [18]. Second, the
knowledge of exact solutions can be helpful for the investigation of systems
with interactions. One can use the free solutions at finite cut-off as a starting
point of perturbative expansion. In both these problems the generalization
to other SU(N) gauge groups can be achieved. Third, the exact form of the
solutions in the bosonic as well as fermionic sectors enables one to study
their large-N limit, which is an important point in the investigations of the
SYMQM systems. Last but not least, the method can be extended to higher
dimensional systems, its application to D = 4, SYMQM with SU(2) gauge
group is now being investigated.

The author would like to thank J. Wosiek for many discussions on the
subject of this paper.
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