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We review the noncommutative gravity of Wess et al. (Class.Quantum
Grav. 22, 3511 (2005) and Class. Quantum Grav. 23, 1883 (2006)) and
discuss its physical applications. We define noncommutative symmetry re-
duction and construct deformed symmetric solutions of the noncommuta-
tive Einstein equations. We apply our framework to find explicit deformed
cosmological and black hole solutions and discuss their phenomenology.

PACS numbers: 11.10.Nx, 02.40.Gh

1. Introduction

Despite the great success of Einstein’s general theory of relativity, it is
generally believed that it has to be modified at small distances, incorporating
quantum effects of spacetime. To achieve this goal and arrive at a consis-
tent theory of quantum gravity, a number of different approaches have been
proposed, including string theory and loop quantum gravity as best known
examples. For another prominent approach, see the contributions on causal
dynamical triangulations to this proceedings. The aim of these models is
to provide a microscopic description of quantum spacetime subsequently to
make contact to more macroscopic phenomena, like e.g. our Universe. In
doing so it turns out that it is quite hard to connect the very small length
scales on which these models are defined with the large scales on which
observable physics takes place, e.g. cosmic inflation or particle physics.

A complementary approach towards quantum gravity is to construct ef-
fective theories as an intermediate step between general relativity and a full
theory of quantum gravity and study physical applications within it. These
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results can then possibly be used to connect full quantum gravities to phys-
ical phenomena. There have been many approaches in this direction, from
which we choose the approach of noncommutative (NC) gravity based on
a deformation of symmetries [1, 2] (see also the review [5]). For a general-
ization to NC supergravity, see [6]. The main idea behind this formalism is
to replace the classical symmetries of general relativity (i.e. the diffeomor-
phisms) by a twist deformed Hopf algebra of diffeomorphisms, which can be
interpreted as quantum symmetries. As a result of this postulate one obtains
that these theories naturally give rise to noncommutative spacetimes. Thus
we do not deal with a quantized metric field, but rather with a metric field
on a quantum spacetime.

We will give an introductory overview of the noncommutative gravity
theory developed in [1, 2]. For a deeper discussion we refer to the original
works and the review [5]. After this, we will shortly review noncommutative
symmetry reduction, discussed previously in [3]. We will keep the discus-
sion very brief and refer to the original paper for more details. As a next
step, we will show under which conditions deformed symmetric models solve
noncommutative Einstein equations and discuss some phenomenology of de-
formed cosmological and black hole models. More details on exact solutions
in NC gravity can be found in [4], or in the related works of Schupp and
Solodukhin [7] and Aschieri and Castellani [8].

2. ?-products, Hopf algebras, Drinfel’d twists, and all that

The basic idea of noncommutative geometry is to replace the usual coor-
dinate functions xµ on a manifold by noncommuting operators x̂µ, satisfying
nontrivial commutation relations

[x̂µ, x̂ν ] = iθµν(x̂) . (1)

Analogously to quantum mechanics, the nontrivial commutators imply un-
certainty relations

∆xµ∆xν 6= 0 (2)

leading to an upper bound on the resolution in spacetime.
For our purposes, a more suitable approach to noncommutative geometry

is to use ?-products instead of operators. The basic idea is to modify, i.e. to
deform, the point-wise product in the algebra of functions on the manifold,
leading to an associative, but noncommutative product. The ?-products we
will use in this work, the so-called RJS products [9, 10], are given by

(f ? g)(x) := f(x) exp
(
iλ

2
←−
XαΘ

αβ−→Xβ

)
g(x) , (3)
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where Xα ∈ Ξ are mutually commuting vector fields on the manifold satis-
fying [Xα, Xβ] = 0 and Θαβ is a constant and antisymmetric matrix, which
can be chosen in the canonical (i.e. Darboux) form. The most widely studied
?-product, the Moyal–Weyl product on R2n, is part of this class. This can
be seen by choosing the partial derivatives as twist generating vector fields,
i.e. Xα = ∂α. Note that due to the noncommutativity of the ?-product, we
can have nontrivial commutators as well

[f ?, g] := f ? g − g ? f 6= 0 . (4)

As a next step, we want to discuss the symmetries of theories including
?-products. For this, we have to note that the RJS ?-product (3) can be
obtained by using a so-called (Abelian or RJS type) Drinfel’d twist given by

F = exp
(
− iλ

2
ΘαβXα ⊗Xβ

)
. (5)

The ?-product (3) is then given by

f ? g = µ
(
F−1 . f ⊗ g

)
, (6)

where µ(f ⊗ g) = f · g is the usual pointwise multiplication map and F−1

is the inverse twist. Furthermore, . denotes the action of vector fields on
functions and is defined via the Lie derivative v.f := Lv(f) = v(f) = vµ∂µf .
Having identified the twist, we can construct the twisted symmetries of RJS
deformed spaces. In order to do this, we start with the classical infinitesimal
diffeomorphisms given by the Lie algebra of vector fields on the manifold
(Ξ, [ , ]). From that we can construct in a canonical way a Hopf algebra
(UΞ, ·, ∆, S, ε), where UΞ is the universal enveloping algebra of vector fields,
· is the related multiplication and ∆ is the coproduct (Leibniz rule). We will
not use the antipode S and the counit ε in the following and refer to [2] for
a definition. The coproduct is an algebra homomorphism and acts on the
generators as follows

∆(u) := u⊗ 1 + 1⊗ u , ∆(1) := 1⊗ 1 . (7)

In order to deform the diffeomorphisms, such that they are compatible
with the RJS product, we just have to deform the coproduct as follows

∆F (ξ) := F∆(ξ)F−1 , (8)

where ξ ∈ UΞ. It can be shown that (UΞ, ·, ∆F , S, ε) is still a Hopf algebra,
but now in general a noncocommutative one. We obtain the compatibility
condition of the coproduct ∆F

ξ . (f ? g) = ξ . µ?(f ⊗ g) = µ?
(
∆F (ξ) . f ⊗ g

)
, (9)

where µ? = µ ◦ F−1 is the ?-multiplication map.
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The ?-product (6) can be generalized to ?-tensor products, ?-wedge prod-
ucts, etc., by using the corresponding action of vector fields on the involved
objects, i.e. using the appropriate Lie derivatives [2].

3. Basics of noncommutative Riemannian geometry and gravity

As it was shown in [1, 2], one can construct covariant derivatives and
Riemannian curvature on twist deformed spaces. These objects are deformed
covariant under the Hopf algebra symmetries by using suitable combinations
of the classical objects and the twist.

In this article, we will not review the NC Riemannian geometry in a basis
free form as presented in [2, 5], but we will give all formulae in a particu-
lar simple basis of vector fields and one-forms. This will lead to a better
readability of this review article.

It can be shown that for all RJS twists (5), which are analytical almost
everywhere, we can find a densely defined basis of vector fields {ea ∈ Ξ :
a = 1, . . . , n}, such that

[ea, Xα] = 0 , [ea, eb] = 0 , (10)

for all a, b, α. Here n denotes the dimension of the manifold. This means
in particular that the twist acts trivially on the basis vector fields. The
associated dual basis {θa} defined by the pairing 〈ea, θb〉 = δba has the same
property.

Making use of the natural basis (10), we obtain the following formulae
for the geometrical quantities: Given a metric g = θb ⊗ θagab, the inverse
metric g−1 = ea ⊗ ebgba fulfills the condition

gab ? g
ca = gac ? gba = δcb , (11)

thus it is simply the ?-inverse matrix of gab. The associated torsion-free and
metric compatible connection, the ?-Levi–Civita connection, is given by

Γ c
ab = 1

2

(
ea(gbd) + eb(gad)− ed(gab)

)
? gcd , (12)

where ea(·) denotes the action of the vector field ea on functions (i.e. the
Lie derivative on functions). The ?-covariant derivative of a tensor field is
given by(
∇?ecτ

)a1...an
b1...bl

= ec

(
τa1...an
b1...bl

)
− Γ b̃

cb1 ? τ
a1...an
b̃...bl

− · · ·+ τa1...ã
b1...bl

? Γ an
cã . (13)

Furthermore, we obtain the ?-Riemann tensor

R d
abc = ea

(
Γ d
bc

)
− eb

(
Γ d
ac

)
+ Γ e

bc ? Γ d
ae − Γ e

ac ? Γ d
be , (14)
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the ?-Ricci tensor Ricab = R c
cab and the ?-curvature scalar R = gab ?Ricba.

One way of writing the NC dynamics of the metric field are the NC Einstein
equations

Gab := Ricab − 1
2gab ?R = 8πGN Tab , (15)

where we have introduced the NC Einstein tensor Gab, a stress-energy ten-
sor Tab and the Newton constant GN. Other possibilities of defining the
dynamics of the NC metric field, like e.g. constructing a deformed version
of the Einstein–Hilbert action, will be discussed elsewhere.

In the following, we will construct solutions of the NC Einstein equa-
tions (15). This is in general a very hard task, since these equations are
nonlinear and also nonlocal due to the ?-products. As in the classical case,
symmetry reduction will turn out to be a helpful tool for constructing sym-
metric solutions.

4. Noncommutative symmetry reduction

In classical gravity, it turned out that splitting the problem of describing
physical situations into finding background solutions and afterwards perturb-
ing them by field fluctuations on those fixed backgrounds is very fruitful for
practical applications. In particular, if the problem obeys some approximate
symmetries, like for example isotropy and homogeneity in cosmology, this
approach has found many successful applications. Using the example of cos-
mology, the typical steps are the restriction of the metric and inflaton field
to spherical symmetric and translation invariant configurations, leading to
the Friedmann equations, which are in general easier to solve than the full
Einstein equations. After solving for the background fields, one allows small
fluctuations of the metric and scalar field in order to determine, e.g., the
fluctuations in the cosmic microwave background (CMB).

In this article, we will focus on the first step in the approach described
above in a noncommutative setting. The second step, i.e. the (quantum)
field theory of fluctuations, will be discussed elsewhere. To reach our goal, we
have to generalize the usual Lie algebra symmetries to quantum Lie algebra
symmetries, which will be the basic ingredients of NC symmetry reduction.
Furthermore, we will discuss the application of NC symmetry reduction to
physical problems, in particular to cosmology and black holes.

While in classical gravity the symmetries of physical problems can of-
ten be described by Lie algebras (g, [ , ]), in noncommutative gravity this
mathematical structure has to be replaced by a so-called quantum or ?-Lie
algebra [11]. For the twist deformed case, ?-Lie algebras can be easily con-
structed by using the twist [2]. For example, the quantum analogon of the
Lie algebra of vector fields (Ξ, [ , ]) is given by (Ξ, [ , ]?), where the ?-Lie
bracket [u, v]? = [f̄α(u), f̄α(v)] is constructed using the commutative Lie
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bracket and the inverse twist F−1 =: f̄α ⊗ f̄α. The same construction can
be performed for every classical Lie algebra (g, [ , ]), if the twist is con-
structed from elements of g.

In NC gravity, the twist is i.e. constructed using general vector fields, not
necessarily related to the symmetries one wants to implement. This means
that we have to look for compatibility conditions among a given classical
symmetry Lie algebra g and a twist F . For the case of RJS twists (5), this
will reduce to compatibility conditions among the vector fields Xα and the
Lie algebra g. This was done in [3] and we found out that the condition

[Xα, g] ⊆ g , ∀α (16)

is a necessary and sufficient condition to turn (g, [ , ]?) into a quantum
Lie subalgebra of (Ξ, [ , ]?). Based on this condition we were able to give
a classification of compatible (F , g)-pairs for RJS twists and cosmological
and black hole symmetries g. We refer to [3] for the results and only state
some models of particular physical interest in Section 6. This method can
also be applied to study deformations of other symmetric spaces, such as for
example (anti) de Sitter spaces or black brane scenarios.

Having a quantum Lie algebra symmetry, we have to study the solution
of the quantum invariance condition on tensor fields τ given by

L?g(τ) := Lf̄α(g)f̄α(τ) = {0} , (17)

which is a deformed version of the statement that the symmetries should
annihilate symmetric tensors (this is the very definition). In this expression
we used the deformed Lie derivative L? constructed by using the twist. We
were able to prove that the quantum invariance condition and the classical
one Lg(τ) = {0} are equivalent, such that the ?-invariant tensor fields are
just the ones invariant under the classical counterpart of the symmetries.

In Table I we compare the classical and deformed version of symmetry
reduction.

TABLE I

Comparison between classical (cl.) and NC symmetry reduction.

Cl. symmetry reduction NC symmetry reduction

Symmetries Lie algebra (g, [ , ]) ?-Lie algebra (g, [ , ]?)

Restrictions none [Xα, g] ⊆ g , ∀α
Inv. condition Lg(τ) = {0} L?g(τ) = {0} ⇔ Lg(τ) = {0}
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5. Dynamics of symmetry reduced sectors: Solutions

In this section, we will study deformed g-symmetric solutions of the NC
Einstein equations (15). For this, we use the framework explained in Sec-
tion 4, see in particular Table I, and use as ansatz ?-symmetric tensor fields
satisfying L?g(τ) = {0}. This results in consistently deformed equations for
the symmetry reduced tensor fields, like e.g. deformed Friedmann equations
in cosmology.

As it was recognized and explained in [4], as well as in the related works
[7,8], the deformed symmetric equations of motion reduce to the undeformed
ones, if the twist (5) satisfies

ΘαβXα ⊗Xβ ⊆ Ξ ⊗ g + g⊗Ξ . (18)

Twists of this form are called semi-Killing, since using the canonical form of
Θαβ , half of the vector fields Xα have to be Killing vector fields, i.e. Xα ∈ g.
The fact that all ?-products between ?-symmetric tensor fields drop out can
be easily understood, since acting with (18) on ?-symmetric tensor fields is
trivial due to their remaining classical symmetries Lg(τ) = {0}, see Table I.

Since, at least in principle, we know how to solve the classical equations
of Einstein gravity coupled to matter, this leads to solutions of the NC
Einstein equations (15). Exact solutions beyond the semi-Killing case are
more complicated, but we have found one particular example in [4], see also
Section 6. Furthermore, in [8] affine Killing twists have been considered,
leading to another class of exactly solvable models.

As a last note, we want to add that the reduction of the deformed sym-
metry reduced dynamics to the undeformed one in the semi-Killing case
does not mean that these models are trivial. In contrast, these models will
indeed receive distinct NC effects from field fluctuations on the background
solutions, as well as from uncertainties of the coordinate operators.

6. Examples of deformed cosmological and black hole solutions

In this section we will give some examples of deformed cosmological
(Friedmann–Robertson–Walker) models and deformed Schwarzschild black
holes. For a complete classification of these models see [3]. Furthermore,
see [4] for a deeper discussion of what follows.

Consider the following families of deformed FRW models CAB and black
hole models BAB:

C22 : X1 = X0
1 (t)∂t , X2 = d∂φ + f2r∂r , (19a)

C32 : X1 = X0
1 (t)∂t + d∂φ , X2 = X0

2 (t)∂t + f2r∂r , (19b)
B12 : X1 = c0

1∂t + κ1∂φ , X2 = c0
2(r)∂t + κ2∂φ + f(r)∂r . (19c)
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Here we used (comoving) spherical coordinates (r, ζ, φ), as well as some freely
chooseable parameter(function)s. These models are examples within the
classification of admissible (F , g)-pairs given in [3]. The associated ?-com-
mutation relations among appropriate coordinate functions are given by:

C22 :


[t ?, exp iφ] = −2 exp iφ sinh

(λd
2
X0

1 (t)∂t
)
t ,

[t ?, r] = 2ir sin
(λf2

2
X0

1 (t)∂t
)
t ,

(20a)

C32 :


[t ?, exp iφ] = 2 exp iφ sinh

(λd
2
X0

2 (t)∂t
)
t ,

[t ?, r] = 2ir sin
(λf2

2
X0

1 (t)∂t
)
t ,

exp iφ ? r = e−λdf2 r ? exp iφ ,

(20b)

B12 :


[t ?, exp iφ] = exp iφ

(
2 sinh

(λκ1

2
(
c0

2(r)∂t+f(r)∂r
))
t−λκ2c

0
1

)
,

[t ?, r] = iλc0
1f(r) ,

[exp iφ ?, r] = −2 exp iφ sinh
(λκ1

2
f(r)∂r

)
r .

(20c)

It turns out that these models are semi-Killing for the choice f2 = 0 in
model C22, X0

1 (t) ≡ 0 in model C32, as well as for all choices of parameters
in model B12. This leads to exact solutions describing NC cosmologies and
black holes.

Next, we will discuss physical implications of the nontrivial coordinate
algebras for some of our models. Consider for example the model C22 (19a)
with f2 = 0 and for simplicity X0

1 (t) ≡ 1. Then the coordinate algebra (20a)
reduces to the algebra of a quantum mechanical particle on the circle, i.e.[

Ê, t̂
]

= λÊ , (21)

where we introduced the abstract operators t̂ and Ê := êxp iφ and set d = 1.
This algebra previously appeared e.g. in the context of noncommutative field
theory [12] and the noncommutative BTZ black hole [13]. It is well known
that the operator t̂ can be represented as a differential operator acting on
the Hilbert space L2(S1) of square integrable functions on the circle and the
spectrum can be shown to be given by σ(t̂) = λ(Z+δ), where δ ∈ [0, 1) labels
unitary inequivalent representations. The spectrum should be interpreted
as possible time eigenvalues. Thus our model with discrete time can be
used to realize singularity avoidance in cosmology. Consider for example
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an inflationary background with scale factor A(t) = tp, where p > 1 is
a parameter. This so-called power-law inflation can be realized by coupling
a scalar field with exponential potential to the geometry even in our NC
model, since the symmetry reduced Riemannian geometry reduces to the
undeformed one as explained above. Note that the scale factor goes to zero
at the time t = 0 and leads to a singularity in the curvature scalar. But
as we discussed above, the possible time eigenvalues are λ(Z + δ), which for
δ 6= 0 does not include the time t = 0.

Taking a look at the coordinate algebra of the black hole (20c), we ob-
serve that it includes in particular the algebra of a quantum mechanical
particle on the circle for time and angle variable, if we choose c0

2(r) ≡ 0
and f(r) ≡ 0. This leads to discrete times. Another simple choice is
c0

1 = κ2 = 0, c0
2(r) ≡ 0, κ1 = 1 and f(r) = r. The radius spectrum

in this case is σ(r̂) = Λ exp(λ(Z + δ)), describing a fine grained geometry
around the black hole. The phenomenological problem with this model is
that the spacings between the radius eigenvalues grow exponentially in r.
This can be fixed by considering a modified twist like e.g. c0

1 = κ2 = 0,
c0

2(r) ≡ 0, κ1 = 1 and f(r) = tanh r
Λ , where Λ is some length scale. The

essential modification is to choose a bounded f(r). Consider the coordinate
change r → η = log sinh( rΛ), then the algebra (20c) in terms of η becomes[

Ê, η̂
]

= −λ
Λ
Ê , (22)

leading to the spectrum σ(η̂) = λ
Λ

(
Z + δ

)
. The spectrum of r̂ is then given

by σ(r̂) = Λ arcsinh exp
(
λ
Λ(Z + δ)

)
. This spectrum approaches constant

spacings between the eigenvalues for large r.
We will close this section by giving an example of a non-semi-Killing

solution of the NC Einstein equations (15). Consider the model C22 with
d = 0 (19a). It turns out that both Xα 6∈ g, therefore the Riemannian ge-
ometry does not reduce to the undeformed one. Thus we expect corrections
in λ to the NC Einstein equations (15) and its solutions.

Consider now the (undeformed) de Sitter space given by the scale factor
A(t) = expHt, where H is the Hubble parameter. It turns out that all
?-products entering the deformed geometrical quantities (see Section 3) re-
duce to the undeformed ones, if X0

1 (t) ≡ 1. Thus the undeformed de Sitter
space solves NC Einstein equations (15) for this particular choice of twist
and an undeformed cosmological constant. Note that in contrast to the
solutions above, we required the explicit form of the scale factor A(t).
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7. Conclusions and outlook

In this paper we gave an introductory overview of the noncommutative
gravity theory defined in [1,2]. This theory is constructed in such a way that
it is covariant under a deformed diffeomorphism symmetry, mathematically
described by a twist deformed Hopf algebra of diffeomorphisms. In Section 4
we reviewed our approach to noncommutative symmetry reduction [3]. We
emphasized the role of quantum Lie algebras and constructed compatibil-
ity conditions among the twist F and the desired symmetry g. Based on
this approach, we discussed the issue of solvability of the noncommutative
Einstein equations in Section 5. We found out under which conditions the
NC Einstein equations reduce to the undeformed ones, thus simplifying the
search for exact solutions. We gave explicit examples of quantum Lie algebra
symmetric cosmological and black hole models solving the noncommutative
Einstein equations in Section 6.

In a future work [14], we will investigate classical and quantum field fluc-
tuations on background solutions. This is a step required in order to make
contact to physics, such as for example the cosmic microwave background
(CMB). In order to formulate and quantize field theories in a deformed co-
variant way, we will use deformed Poisson algebras as defined in [15].

I want to thank the organizers and participants of the XLIX Cracow
School of Theoretical Physics 2009 in Zakopane for this very interesting
conference. Furthermore, I want to thank the Faculty of Physics and As-
tronomy of the University of Würzburg for the financial support through
the “Wilhelm-Conrad-Röntgen-Studienpreis”. This research is supported
by Deutsche Forschungsgemeinschaft through the Research Training Group
1147 Theoretical Astrophysics and Particle Physics.
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