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The gauge approach to the theory of gravity has been widely discussed
as an alternative to standard general relativity. The Poincaré group, as
a symmetry group of all relativistic theories in the absence of gravitation,
constitutes the most natural candidate for a gauge group. Although the
Poincaré gauge theory of gravity has been elaborated over the years and
cast into a beautiful formal framework, some fundamental problems have
remained unsolved. One of them concerns the inclusion of matter. The
minimal coupling procedure, which is employed in standard Yang–Mills
theories, appears to be ambiguous in the case of gravity. We propose a
slight modification of this procedure, which removes the ambiguity. Our
modification justifies some earlier results concerning the consequences of
the Poincaré gauge theory of gravity. In particular, the predictions of
Einstein–Cartan theory with fermionic matter are rendered unique. We
recall the earlier proposed solution based on modified volume-forms. The
advantage of our modification is that the predictions of the theory are not
radically changed. Basically, this modification simply justifies the results
that were obtained partly “by chance” in the hitherto prevailing accounts
on the Einstein–Cartan theory. The only difference in the predictions,
when compared to the standard treatment, concerns the Proca field in the
presence of gravity. The “torsion singularities” that occur there are shifted
towards other values of the field.

PACS numbers: 04.50.Kd, 04.40.–b, 11.30.Er, 11.15.–q

1. Introduction

As noted by Einstein himself [1], the theory of gravity can be formulated
by considering the metric and the connection as independent fields, which
is referred to as first order formalism. It was originally observed by Weil [2]
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that this formulation leads to different predictions, when compared to the
standard second order metric approach, after fermions are included. At the
same time, Weil pointed out that the second order formalism would yield
the results indistinguishable from those produced by the first order one if
fermionic Lagrangian was supplemented by an additional term. However,
this term would have to contain fourth order powers of the Dirac field and
the flat space fermionic Lagrangian thus obtained would generate a nonlinear
equation, instead of the standard Dirac one. It is also important to stress
that Weil concentrated on the equations for the metric and the Dirac field.
He would not be able to state an equivalence of the two formalisms if he
attached any significance to the space-time torsion.

Since the introduction by Yang and Mills of the non-Abelian gauge the-
ories [3], attempts have been undertaken of describing all the known inter-
actions as emerging from the localization of some fundamental symmetries
of the laws of physics. It is now clear that all the non-gravitational funda-
mental interactions can be successfully given such an interpretation. The
Yang–Mills theories constitute a formal basis for the standard model of par-
ticle physics. However, gravitational interaction has always been an odd
one. Although the attempts to describe gravity as a gauge theory were ini-
tiated by Utiyama [4] within a mere two years after the pioneering work of
Yang and Mills, the construction of this theory seems yet not to be satis-
factorily completed. All the relativistic theories in the absence of gravity
are invariant under the (global) action of the Lorentz group. They are also
trivially invariant under space-time translations. Therefore, it seems natu-
ral to adopt either the Lorentz group or the full Poincaré group as a gauge
group. Utiyama’s approach employed the Lorentz group, but then it was
necessary to introduce ad hoc a set of fields, which were subsequently iden-
tifiedwith the tetrad system on the resulting Riemannian manifold. It was
then observed by Kibble [5] that this and other failings of Utiyama’s theory
can be remedied if the full Poincaré group is promoted to the gauge group.
This necessitates the first order formalism for general relativity, with met-
ric (but non-symmetric) connection, as the set of Yang–Mills fields has to
consist of ten independent one-forms. At the same time, another aesthetic
deficiency of GR was removed. At the microscopic level, elementary particle
states can be classified by the irreducible unitary representations of the (uni-
versal covering of the) Poincaré group, which are labeled by mass and spin of
the particle. It seems rather artificial to assume that distribution of masses
produces the curvature of space-time, whereas spin does not influence the
geometry at all. In the Poincaré gauge theory, the macroscopically averaged
distribution of spin appears to be a source of the space-time torsion. This
fact was in agreement with the earlier ideas of Elié Cartan and hence the re-
sulting modification of GR is usually referred to as Einstein–Cartan theory.
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The curvature and the torsion of space-time are parts of the curvature of
the Poincaré connection of the underlying gauge theory, which is explained
in Section 2.

If a field theory in Minkowski space is given, this theory being symmetric
under the global action of a representation of a Lie group, the natural way
to introduce the corresponding interaction within the spirit of Yang–Mills
theory is to apply the minimal coupling procedure (MCP). Indeed, in the
standard model of particle physics this procedure is followed on the funda-
mental level, leading to predictions that agree with experimental results with
great accuracy. In GR, the principle of equivalence, which states that the
effects of gravitation can be locally “turned off” by a suitable choice of a refer-
ence frame, necessitates minimal coupling. This principle alone can be used
to derive a majority of predictions of GR (see [6] andAppendixB), which
are again excellently confirmed by observations and experiments. However,
trying to apply MCP in order to pass from a field theory in flat space to a
Riemann–Cartan space-time1 results in difficulties. This is because adding
a divergence to the flat space Lagrangian density, which is a symmetry trans-
formation, leads to the non-equivalent theory in curved space after MCP is
applied. Although this problem was observed already by Kibble, it has
been largely ignored in the subsequent investigations concerning EC theory.
The paper [7] provides an interesting example. The authors begin with a
particular flat space fermionic Lagrangian, which is quadratic in fields and
generates the Dirac equation. Then MCP is applied and standard gravita-
tional (first order) term is added to the Lagrangian. Owing to the algebraic
character of the equation that relates the density of spin and the torsion, the
latter can be expressed through matter fields and the result can be inserted
back into the Lagrangian. In this way an effective action is obtained that
depends on the metric and the matter fields only. Its gravitational part is
represented by the standard second order action of GR. The matter part,
however, differs from the one that would be obtained via MCP in standard
GR from the same initial flat space fermionic Lagrangian. The difference
is represented by an additional term, which is the square of the Dirac ax-
ial current, preceded by a very small coupling constant (of the order of l2,
where l is the Planck length). This term can be interpreted as describing
a gravitationally-induced point-interaction between fermions. Further, one
can find the equation for the Dirac field, which is nonlinear, even in the limit
of the space-time metric being Minkowski’s flat one. Although derivations
presented in [7] were slightly different from the line of reasoning presented
above, the existence of such a weak contact interaction in EC theory was
the main result of the paper in question. But is it justified to claim that

1 A Riemann–Cartan space is a manifold with a metric tensor and a metric connection
(in general non-symmetric).
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the occurrence of this interaction distinguishes the EC theory from GR?
In fact, one could find the Minkowskian limit of the matter part of the ef-
fective Lagrangian and use the resulting modified fermionic Lagrangian as
a starting point for MCP in GR. One would than trivially obtain the same
curved space action as the effective one of EC theory. Hence, as far as torsion
is not given a fundamental significance, the two theories (EC and GR) could
be considered as indistinguishable. This is exactly what Weil concluded al-
ready in [2]. However, in GR we need to put the point interaction into the
theory by hand, whereas in EC it arises naturally as a consequence of an
interrelation between spin and torsion. If we postulated that a simple (sec-
ond order in field powers) Lagrangian generating standard Dirac equation
should be used as a starting point for MCP in each case (one could discuss
whether such a postulate is justified or rather artificial), then it could seem
to follow from the analyses of [2] and [7] that EC gravity indeed differs from
GR by the presence of the above discussed point fermion interaction.

Unfortunately, even such a statement, after all the stipulations that we
have made, would not be true. It is namely important which simple La-
grangian generating Dirac equation is used. In flat space, we are free to add
a divergence of a vector field to the Lagrangian density, which would make
difference for the final theory in the Riemann–Cartan space, as mentioned
above. Exploiting this freedom, one can produce, in addition to the axial–
axial point-interaction, also a vector–vector one, as well as a parity breaking
axial–vector one. The coupling constants of these interactions may reach sig-
nificant values. What is more, one can eliminate all of them on the effective
level and thus render the predictions of EC theory with fermions indistin-
guishable from the predictions of GR, in spite of all our limitations. These
facts were discussed in [8]. Hence, it seems that MCP should be somehow
modified for the sake of connections with torsion, so that it gives equivalent
results for equivalent flat space Lagrangians. This issue is of principal impor-
tance if EC theory is to regain its predictive power. An attempt to establish
such a modified procedure was made by Saa [9, 10]. Unfortunately, Saa’s
solution results in significant departures from standard GR, which seem in-
compatible with observable data [11,12], unless some additional assumptions
of rather artificial nature are made, such as demanding a priori part of the
torsion tensor to vanish [13]. The main purpose of this paper is to introduce
an alternative modification of MCP, which also eliminates the ambiguity.
Unlike Saa’s proposal, our approach does not lead to radical changes in the
predictions of the theory. In the case of gravity with fermions, the procedure
simply justifies the earlier results of [7, 14–17]. These results were obtained
partly “by chance”, as the flat space Dirac Lagrangian was randomly selected
from the infinity of equally good possibilities. The same applies to the pa-
per by Perez and Rovelli [18] in which the semi-classical physical effects of
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the Immirzi parameter of Loop Quantum Gravity were discussed. As shown
in [19], the predictions of EC gravity with Holst term and fermions radically
change when we pass from one equivalent fermionic Lagrangian to another.
However, if we use the corrected coupling procedure proposed here, instead
of the standard MCP, the two-parameter family of theories of [19] shrinks
into the unique theory, which is exactly the one described in [18].

After the Poincaré gauge theory was brought to life by Kibble, the rela-
tion between the translational gauge fields and the tetrad from the point
of view of fibre bundle formulation was clarified by Trautman [20] (see
also [21]). There the whole affine group was considered as a gauge group.
The geometric concept of a radius mapping, which was used in [20], is in-
timately connected with the Poincaré coordinates, whose physical meaning
was later elaborated in [22]. For an exhaustive review of possible approaches
to the formulation of gauge theory of gravity, see [24]. In this paper we aim
to formulate the theory in a possibly simple (though precise) manner, rather
than to acquire the highest degree of generality and mathematical complex-
ity. Such a simple formulation is presented in Section 2. In Section 3 we
explain the origin and consequences of the ambiguity of MCP in the presence
of torsion, using the Dirac field case as an instructive example. In Section 4
we present two possible modifications of MCP which remove the ambiguity.
First of them is the earlier Saa’s procedure and the second is our proposal.
We comment on the aesthetical advantages of a Poincaré gauge formulation
of gravity combined with our coupling procedure. In Section 5 we describe
the consequences of application of our procedure to different field theories.
An interesting issue is the fate of torsion singularities in the theory of Proca
field. Finally in Section 6 we draw the conclusions.

2. The Poincaré gauge theory

2.1. Yang–Mills theories

Let us recall the classical formalism of a Yang–Mills gauge theory of a Lie
group G. Let

S[φ] =
∫
L (φ, ∂µφ) d4x =

∫
L (φ, dφ) (2.1)

represent the action of a field theory in Minkowski space M . Here L is a
Lagrangian density and L a Lagrangian four-form. Assume that V is a (finite
dimensional) linear space in which fields φ take their values, φ : M → V,
and π is a representation of Lie(G) on V. Let ρ denote the corresponding
representation of the group2, ρ (exp(g)) = exp (π(g)). Suppose that the

2 More precisely, in a generic case ρ is a representation of the universal covering group
of G, which may not be a representation of G itself.



674 M. Kaźmierczak

Lagrangian four-form, and hence the action, is invariant under its global
action

L (ρ(g)φ, d (ρ(g)φ)) = L (ρ(g)φ, ρ(g)dφ) = L (φ, dφ) . (2.2)
Then one can introduce an interaction associated to the symmetry group G
by allowing the group element g to depend on space-time point and demand-
ing the theory to be invariant under the local action of G. This can be most
easily achieved by replacing the differential by the covariant differential

dφ→ Dφ = dφ+ Aφ , (2.3)

where A is a Lie(G)-valued3 one-form field on M which transforms under
the local action of G as

A→ A′ = ρ(g)Aρ−1(g)− dρ(g)ρ−1(g) . (2.4)

Then D′φ′ = ρ(g)Dφ and L (φ,Dφ) is invariant under the local action of G,
on account of (2.2). If the basis of Lie(G) is chosen, the components of A
represent Yang–Mills fields of the resulting theory. The field strength can
be represented by a Lie(G)-valued two-form

F := dA + AA ,

which transforms in the adjoint representation of Lie(G) and obeys Bianchi
identity

F′ = ρ(g)Fρ−1(g) , dF + [A,F] = 0 . (2.5)
Think of A and F as matrices belonging to the representation of Lie(G)
whose entries are one-forms on M . When multiplying such matrices, one
should multiply their entries externally. The next step is the construction
of a gauge-field part of the action, which should be built of A and remain
invariant under gauge transformations (2.4).

2.2. The Poincaré group as a gauge group

The Poincaré group P consists of all isometries of Minkowski space.
They can be represented by pairs (Λ, a) acting on M as (Λ, a)x = Λx + a,
where x ∈M , a represents a column of four real numbers and Λ ∈ O(1, 3)
is a Lorentz matrix4. One easily finds out that the composition law is
(Λ1, a1)(Λ2, a2) = (Λ1Λ2, Λ1a2 + a1). Let

ρ(Λ, a) : = ρ(a)ρ(Λ) ,

ρ(a) : = exp (aaP a) , ρ (Λ(ε)) := exp
(

1
2εabJ

ab
)

3 More precisely, A and F take values in the representation π of Lie(G). The same
concerns similar situations appearing later on.

4 We will not discuss parity and time reversal transformations in this article, hence one
can think of Λ as a proper ortochronus Lorentz matrix.
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be the representation of P. Here P a, Jab are the generators of translations
and Lorentz rotations and belong to the representation π of Lie(P) (see
previous subsection). The coefficients εab = −εba are parameters of the
Lorentz transformation Λ(ε) = exp(ε). Here ε ∈ so(1, 3) is the matrix
with entries εab := ηacεcb, where (ηab) = (ηab) = diag(1,−1,−1,−1) is
Minkowski matrix. Using the composition law and employing infinitesimal
transformations one can derive transformation properties of the generators
and the commutation relations for the Poincaré algebra (see [31] for these
derivations)

ρ(Λ, a)P aρ−1(Λ, a) = Λc
aP c ,

ρ(Λ, a)Jabρ−1(Λ, a) = Λac Λ
b
d

(
Jcd + acP d − adP c

)
,[

P a, Jcd
]

= ηacP d − ηadP c ,[
P a, P b

]
= 0 ,[

Jab, Jcd
]

= ηadJbc + ηbcJad − ηbdJac − ηacJbd . (2.6)

If gravity is not present, special theory of relativity forces all the field theories
to be invariant under the global action of the Poincaré group. It would
be a tempting idea to derive gravitational interaction by demanding this
symmetry to hold locally. Then, gravity would emerge from special relativity
in much the same way as electromagnetism emerges from the invariance of
a matter Lagrangian under the change of phase. In order to construct the
covariant differential, one needs to introduce the Lie(P)-valued one-form

A = 1
2 ωabJ

ab + ΓaP
a , (2.7)

where ωab = −ωba and Γa are one-forms5 onM. Under gauge transforma-
tions (2.4), these one-forms transform as

ω′ = ΛωΛ−1 − dΛΛ−1 , Γ ′ = ΛΓ − ω′a− da , (2.8)

which can be easily verified for infinitesimal transformations (use (2.6)).
Here ω is a matrix with entries ωab and Γ a column matrix with entries Γ a.
It is now time to recall that we aim to formulate the theory of gravitational
interaction, which ought to be bound up with the geometry of space-time,
according to Einstein’s idea. The first equation of (2.8) is simply the trans-
formation rule for connection one-forms under the change of an orthonormal
frame of vector fields. Indeed, orthonormal frames on Lorentzian manifold

5 HereM is the space-time manifold, which will no longer be the Minkowski space M
in the presence of gravity.
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are connected by local Lorentz transformations. Note also that the antisym-
metry ωab = −ωba means metricity of the resulting space-time connection.
Unfortunately, we do not have a metric given a priori on space-time, after
we have disposed of the flat Minkowski’s one. Hence, we need to provide
somehow the space-time with metric structure, preferably via the introduc-
tion of a cotetrad field e (it has long been known that tetrads are necessary
to include fermions in the theory of gravity [2]). The transformation for-
mula for e, compatible with the one for ω (2.8), would be e′ = Λe (think of
e as a column of one-forms ea = eaµdx

µ). Therefore, one cannot just adopt
the translational gauge field Γ as representing cotetrad. The solution is to
introduce a vector-valued zero-form y (a column of functions onM), which
transforms under the local Poincaré transformation (Λ, a) according to

y′ = Λy + a , (2.9)

and then introduce the cotetrad

e := Γ +Dy , Dy = dy + ωy . (2.10)

D will always denote the Lorentz covariant derivative (see Appendix A).
Then from (2.8) and (2.9) it follows that e′ = Γ ′ + dy′ + ω′y′ = Λe, as
desired. Although the new field y can seem to have been introduced ad hoc,
it can be given a natural geometric interpretation in the language of fibre
bundles [20], as well as the physical meaning [22, 26, 30]. What is more, if
the Lagrangian four-form depends on y and Γ only via the cotetrad e, one
is free to acknowledge e as a fundamental field and forget about its origin.
Indeed, the variation of such a Lagrangian would be

δL = δea ∧ δL

δea
+ δωab ∧ δL

δωab
+ δφ ∧ δL

δφ
, (2.11)

φ representing matter fields. Since δea=δΓ a+Dδya+δωabyb, we finally get

δL = δΓ a ∧ δL

δea
− δyaD

(
δL

δea

)
+ δωab ∧

(
yb
δL

δea
+

δL

δωab

)
+ δφ ∧ δL

δφ
+ d

(
δya

δL

δea

)
. (2.12)

Comparing (2.12) with (2.11) one can see that promoting e to the funda-
mental field, instead of Γ and y, do not influence the resulting system of
field equations. Having the cotetrad introduced, we can define the torsion
two-form Qa := Dea = 1

2T
a
bce

b ∧ ec. Then using (2.7) and relations (2.6)
one finds that

F = 1
2 ΩabJ

ab +
(
Qa −Ωabyb

)
P a,
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where Ωa
b := dωab+ωac∧ωcb = 1

2R
a
bcde

c∧ed is the curvature two-form. One
can check that F obeys (2.5) (the Bianchi identity appears to be equivalent
to dΩ + [ω,Ω] = 0, DQ = Ωe).

By adopting L = LG+Lm as a Lagrangian, where LG = − 1
4k εabcde

a∧eb∧
Ωcd represents gravitational part and Lm the matter part (here k = 8πG,
where G is the gravitational constant), one recovers the field equations of
the Einstein–Cartan theory of gravity

δLG
δea

+
δLm
δea

= 0 , ⇔ Gab := Rab − 1
2Rδ

a
b = k tb

a ,

δLG
δωab

+
δLm
δωab

= 0 , ⇔ T cab − T aηbc + T bηac = kSabc ,

δLm
δφ

= 0 , (2.13)

where Rab :=ηacRdcdb, R :=Raa, T a :=T bab and the dynamical definitions of
energy-momentum and spin density tensors on Riemann–Cartan space are

tabe
b := − ? δLm

δea
, Sabcec := 2 ?

δLm
δωab

. (2.14)

Here ? is the Hodge star of the cotetrad-induced metric g = ηabe
a ⊗ eb

(see Appendix A). We have not yet explained how to construct the matter
Lagrangian Lm from its flat space counterpart. This issue appears to be
problematic and will be considered in the following section.

3. Coupling gravity to matter fields — standard approach

Let (2.1) denote the action functional of a classical field theory in Min-
kowski space M . It is well known that the transformation

L → L′ = L+ ∂µV
µ (3.1)

of the Lagrangian density changes L by a differential

∂µV
µ d4x = £V d

4x = − ? dxµ ∧ dV µ = d(V y d4x) , (3.2)

where £ denotes the Lie derivative, y the internal product, ? is the Hodge
star of the flat Minkowski metric and xµ are inertial coordinates on M .
Not only does this transformation not change the field equations generated
by S, but it also leaves the integrated energy and momenta obtained via
Noether procedure invariant [8]. Despite the more subtle behavior of the
spin density tensor [8], the transformation still seems to be a true symmetry
of the theory. We wish now to introduce a new interaction. A reasonable
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consistency condition would be to require the resulting theory not to depend
on whether we have added a divergence to the initial Lagrangian density
or not. In other words, we wish that adding a topological term to the
Lagrangian of the initial theory results in a topological term in the final
theory with gravity included.

For the sake of simplicity, let us consider an example of the Dirac field.
The most frequently used Lagrangian four-form is

LF0 = −i (?dxµ) ∧ ψγµdψ −mψψ d4x

= ψ (iγµ∂µ −m)ψ d4x . (3.3)

Here γµ are the Dirac matrices obeying γµγν +γνγµ = 2ηµν and ψ := ψ†γ0,
where ψ† is a Hermitian conjugation of a column matrix (think of ψ as a
column of four complex-valued functions on space-time). In the spirit of the
conventional Yang–Mills theory, we should merely perform the replacement
(2.3) to “turn on” the interaction. Explicitly,

dψ → dψ + Aψ , dψ → dψ + ψγ0A†γ0 . (3.4)

Consider addition of a divergence of a vector field of the form

V µ = ψCµψ , Cµ = aγµ + bγµγ5 (3.5)

to the initial Lagrangian density. Here a and b are arbitrary complex num-
bers. This form was chosen so that the new Lagrangian was equally “reason-
able” as the original one (quadratic in fields, invariant under global proper
Poincaré transformations). Under the replacement (3.4), the differentials
dV µ transform as

dψCµψ + ψCµdψ → dV µ + ψ
(
γ0A†γ0Cµ + CµA

)
ψ . (3.6)

In the case of non-gravitational interactions, the gauge groups are unitary
(hence A is anty-Hermitian) and their representations do not act on the
spinor indedices of ψ, which means that A commutes with γ0 and Cµ. Next,
using γ0γ0 = 1, we can conclude that dV µ remains unchanged and (3.2) is
still a differential. Hence, the two equivalent non-interacting theories give
rise to the equivalent theories with interaction.

Let us now turn to gravity. The Lagrangian four-form (3.3) is invariant
under the global action of the Poincaré group

x→ x′ = Λx+ a , ψ → ψ′ = S(Λ)ψ ,

S(Λ(ε)) := exp
(
− i

4
εµνΣµν

)
, Σµν :=

i

2
[γµ, γν ]
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(use the identity γ0S†(Λ)γ0 = S−1(Λ) to check this invariance). In order
to make this symmetry local, it is not sufficient to perform the substitution
(3.4)6. Now we pass from Minkowski space M to the Riemann–Cartan
manifoldM(ω, e) — the manifold with the metric structure (described by e)
and the metric-compatible connection. We should, therefore, replace the
basis of one-forms dxµ of M by the cotetrad basis ea of M and use the
Hodge star operator ? adapted toM. The resulting Lagrangian four-form is

L̃F0 = −i (?ea) ∧ ψγaDψ −mψψ ε ,

Dψ = dψ − i

4
ωabΣabψ (3.7)

(the matrices γa, a = 0, . . . , 3 are just the same as γµ, µ = 0, . . . , 3). Here
ε = e0 ∧ e1 ∧ e2 ∧ e3 is the canonical volume element onM.

In more general terms, for a flat space field theory of a field φ, which is
to be adapted to the Riemann–Cartan manifold M with the metric g and
the metric-compatible connection ∇, the procedure thus described amounts
to the passage

L(φ, ∂µφ, . . . ) d4x −→ L(φ,∇µφ, . . . ) ε , (3.8)

where ε =
√
|det g| d4x is the canonical volume four-form, det g being the

determinant of the matrix of components gµν = g(∂µ, ∂ν) of the metric
tensor. The dots correspond to the possibility of L to depend on higher
derivatives of fields. Here ∇µφ denotes the appropriately defined covariant
derivative of φ with respect to the connection ∇ ofM (the details depend
on the particular field φ). This procedure will be referred to as the minimal
coupling procedure (MCP) for the gravitational interaction.

From the form of the covariant derivative Dψ in (3.7) one can read out
the generators of the relevant representation ρ of the Poincaré group and
find the representation itself

P a = 0 , Jab = − i
2

Σab , ρ(Λ, a) = S(Λ) .

One can find out that they satisfy the relations (2.6) and that D′ψ′ =
S(Λ)Dψ, on account of the first equation of (2.8). Hence, the Lagrangian
four-form (3.7) is invariant under the local action of the gauge group, as
desired. In the most conventional approach to the Poincaré gauge theory of
gravity with fermions, which we follow in this article, the translational part

6 It would be sufficient to replace the differentials by covariant differentials if the Mi-
nowskian coordinates were interpreted as fields and their covariant differential in-
troduced appropriately. The gauge formulation of gravity would then gain more
elegance. See [22,23] for the details.
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of the Poincaré group is realized trivially. The possibility and consequences
of a nontrivial realization of translations were addressed in [23] (see also
[22,27–29]).

Let us now consider the effect of the transformation (3.1), performed
on the initial Lagrangian, on the final Lagrangian four-form on Riemann–
Cartan manifold. We shall consider the vector field of the form (3.5). It is
straightforward to check that the following Leibniz rule applies(

Dψ
)
Caψ + ψCaDψ = d

(
ψCaψ

)
+ ωab

(
ψCbψ

)
(3.9)

(use [γa,Σbc] = 4iηa[bγc]). One can next decompose the connection ω into
the Levi–Civita part and the part determined by torsion (see [8] for this
kind of calculations) and finally conclude, that the change in the resulting
Lagrangian four-form onM will be

d (V yε)− TaV aε , (3.10)

where T a is the torsion trace vector introduced in (2.13). Within the frame-
work of classical general relativity, where the torsion of the connection is as-
sumed to vanish, the result would be again a differential. In Einstein–Cartan
theory the torsion is determined by the spin of matter via the second equa-
tion of (2.13) and does not vanish in general. Hence, the equivalent theories
of the Dirac field in flat space can lead to the non-equivalent theories with
gravitation.

Let us ignore this problem for a moment and look at the field equations
generated by (3.7) resulting from variation with respect to ψ and ψ. The
variational derivatives are

δL̃F0

δψ
= (iγaDaψ −mψ) ε ,

δL̃F0

δψ
=
(
−iγaDaψ −mψ − iTaψγa

)
ε ,

where Daψ denotes the a-th component of a one-form Dψ in the cotetrad
basis: Dψ = (Daψ) ea. To derive this results, it is useful to know the
identity D (?ea) = Taε. Contrary to what would be expected from the Dirac
field, calculating the variational derivative with respect to ψ and equating
it to zero yields the equation that is not equivalent to the one obtained by
varying with respect to ψ. For LF0, the equivalence of the corresponding
equations follows from the fact that LF0 differs by divergence from the real
Lagrangian four-form

LFR = − i
2

(?dxµ) ∧
(
ψγµdψ − dψγµψ

)
−mψψd4x. (3.11)
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But this is no longer the case for L̃F0. The commonly accepted solution
to this problem is to adopt (3.11) as an appropriate flat space Lagrangian.
Then the application of MCP yields

L̃FR = − i
2

(?ea) ∧
(
ψγaDψ −Dψγaψ

)
−mψψ ε

and the field equations obtained by varying with respect to ψ and ψ are

iγaDaψ −mψ +
i

2
γaTaψ = 0 ,

−iγaDaψ −mψ −
i

2
Taψγ

a = 0 . (3.12)

Hence, they are equivalent. This choice of Lagrangian served as the basis
for physical investigations in numerous papers. But the reality requirement
does not fix the theory uniquely. We can next add to LFR the divergence of
a vector field of the form (3.5), where now the parameters a, b are required
to be real, since we do not want to destroy the reality of the Lagrangian.
If we required the Lagrangian to be parity invariant, we would have to set
b = 0. But there are no arguments in favor of choosing a particular value
of a, except for some speculations concerning the resulting form of the spin
density tensor [8]. The nonzero values of the parameters a and b can lead
to the meaningful physical effects [8, 19].

Hence, the standard MCP for the Poincaré gauge theory of gravity ap-
pears to involve an ambiguity. In the next section we will present possible
solutions to the problem.

4. How to remove the ambiguity?

4.1. Preliminary remarks

Let L̃ and L̃′ denote the results of application of MCP (3.8) to the flat
space Lagrangian densities L and L′, connected by the transformation (3.1).
We could expect their difference to be

L̃′ − L̃ = ∇µV µ, (4.1)

where ∇µV ν is the standard abbreviation for the ν-th component of the
covariant derivative of V in the direction of a basis vector field ∂µ, ∇µV ν :=
(∇∂µV )ν = ∂µV

ν + Γ νρµV
ρ, where the connection coefficients in the holo-

nomic basis ∂µ are defined by ∇∂µ∂ν = Γ ρνµ∂ρ. Similarly, the connection
coefficients in the tetrad basis are provided by ∇ẽa ẽb = Γ cbaẽc and their
relation to the connection one-forms is ωab = Γ abce

c. The difference in
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the corresponding Lagrangian four-forms can be expressed in terms of the
cotetrad and the connection one-forms as

L̃′ − L̃ = − (?ea) ∧DV a, (4.2)

where DV a = dV a +ωabV
b is the usual covariant derivative of a differential

zero-form of vectorial type (see Appendix A).
Note that these equivalent statements (4.1) and (4.2)7 are not so obvious.

One should think of V as composed of the fields of the theory, an example
of such reasonable composition for the Dirac theory being provided by (3.5).
In order to see what the divergence of V would become after the application
of MCP, we have to rewrite it in such a way that the differential operators
act directly on fields. Then the derivatives (or differentials) of fields should
be replaced by the covariant ones. In the case of the Dirac field, (4.2) will be
true for the vector field of the form (3.5). This is because the Leibniz rule
(3.9) holds in this case. In general, this rule would not apply to V a = ψAaψ,
with the matrices Aa being different from Ca of (3.5). But such V a would
not represent a genuine vector field, as its components would transform
improperly under Lorentz transformations. In the following, we will only
consider genuine vector fields, with correct transformation properties, to
which the results (4.1) and (4.2) apply.

One can prove that

∇µV µ =
◦
∇µV µ − TµV µ , (4.3)

where
◦
∇ is the torsion-free Levi–Civita connection and Tµ = T νµν the tor-

sion trace vector (compare with (3.10))8.

4.2. Modified volume form approach — Saa’s proposal

After multiplied by the canonical volume element, the first term in (4.3)
becomes a Lie derivative of a four-form (and hence a differential)

◦
∇µV µε =

£V ε = d(V yε). This is not the case for the second term. The basic idea
of [13] is that we could make the whole expression to be a Lie derivative, if
we used another volume element τ = fε, instead of the canonical one. Here,
f is a nowhere vanishing function, which should be suitably adapted to the

7 Use DV a = (∇bV a)eb and (?ea) ∧ eb = −δbaε to show this equivalence.
8 The torsion tensor can be defined in terms of the connection ∇ by T (X,Y ) = ∇XY −
∇YX − [X,Y ], where X, Y are vector fields and [, ] is the Lie bracket. In the
holonomic basis, the components are expressed through the connection coefficients
by T ρµν=dxρ (T (∂µ, ∂ν))=−Γ ρµν+Γ ρνµ. The components in the tetrad basisT abc=
ea (T (ẽb, ẽc)) coincide with those of the torsion two-form Qa introduced in Sec. 2.2.
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connection (all volume forms on the manifold differ by a nowhere vanishing
function). Let us impose the requirement

∇µV µτ = £V τ . (4.4)

On account of (4.3), the LHS can be rewritten as f
◦
∇µV µε−fTµV µε, whereas

the RHS can be rewritten as £V (fε) = V (f)ε+ f£V ε. Since
◦
∇µV µε = £V ε

and V (f) = V µ∂µf , we can see that (4.4) will be satisfied if and only if
Tµ = −∂µ ln f . The solution to the problem of non uniqueness of MCP
procedure could, therefore, be to postulate that the torsion trace should
be derivable from the potential − ln f and to promote this potential to the
fundamental field of the theory. At the same time, the coupling procedure
(3.8) should be slightly modified — instead of the canonical volume form,
the connection compatible volume form τ = fε ought to be applied. This
removes the ambiguity. However, the price is considerably high, as the re-
sulting field equations differ significantly from the usual equations of general
relativity, or Einstein–Cartan gravity. Although a lot of interesting effects
can be observed on the ground of this theory, such as propagating torsion or
coupling gauge fields to torsion without breaking the gauge symmetry [9,10],
some implications of the model seem not to be compatible with observational
data [11, 12]. The solution could be to postulate the torsion trace a priori
to vanish [13], but such an artificial assumption significantly decreases the
elegance of the theory.

4.3. Modified connection approach

Let us recall that the main purpose of introducing a covariant derivative
(2.3) with A transforming according to (2.4) was to localize the symmetry.
Note that the requirement that A takes values in the range of the represen-
tation π was not really necessary to achieve this purpose. Let us consider
the generalised covariant derivative D of the form

Dφ = dφ+Aφ , (4.5)

where A is a Lin(V)-valued one-form field on space-time (Lin(V) being the
set of linear maps of V into itself) which transforms under the local action
of G as

A → A′ = ρ(g)Aρ−1(g)− dρ(g)ρ−1(g) (4.6)

(this guaranties that the symmetry is localised). Hence, we drop the require-
ment of standard YM that A takes values in a linear subspace Ran(π) :=
{π(g) : g ∈ Lie(G)} ⊂ Lin(V). We adopt a more general approach, in which
A assumes the form

A = A + B(A, e) , (4.7)
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where A is the usual YM connection taking values in Ran(π) and trans-
forming according to (2.4), e denotes an orthonormal basis of one-form
fields (tetrad) serving physically as a reference frame at each point of space-
time9, B(A, e) is a Ran(π)⊥-valued one-form. Here ⊥ denotes the orthogonal
complement with respect to some natural scalar product on Lin(V). The
simplest candidate for this scalar product is 〈〈X,Y 〉〉 = Tr

(
X†Y

)
, where

† stands for Hermitian conjugation of a matrix. However, if V admits a
ρ-invariant scalar product 〈, 〉ρ, such that ∀v, w ∈ V, g ∈ G, 〈ρ(g)v, ρ(g)w〉ρ
= 〈v, w〉ρ, then the use of the induced scalar product 〈〈, 〉〉ρ on Lin(V) satisfy-
ing 〈〈ρ(g)Xρ−1(g), ρ(g)Y ρ−1(g)〉〉ρ = 〈〈X,Y 〉〉ρ may seem esthetically more
appealing. This product may not be positive-definite, but if the subspace
Ran(π) ⊂ Lin(V) is non degenerate with respect to 〈〈, 〉〉ρ, then the space of
linear maps decouples into a simple sum Lin(V) = Ran(π) ⊕ Ran(π)⊥ and
hence A and B(A, e) are uniquely determined by A.

In order not to introduce additional fields, B is required to be determined
by A and e. In order not to destroy the transformation law (4.6), it is also
required that B(A′, e′) = ρ(g)B(A, e)ρ−1(g). Our final requirement is that
the coupling procedure thus obtained by free of the ambiguity corresponding
to the possibility of the addition of a divergence to the initial matter action.

It is remarkable that in the case of the gravitational interaction and
fermions these ideas, together with the natural requirement that the Leib-
niz rule holds for vector fields composed of spinors, fix the form of B(A, e)
(up to terms that can be absorbed by other known fundamental interactions
and do not influence the resulting connection on the base manifold), as we
will see below. All the constructions of YM can be accomplished in terms
of A and its curvature F = dA + A ∧A. The role of B is only to modify the
coupling procedure such that it is unique.

Let us now concentrate on the case of the Dirac field. ThenV=C4 and the
space Ran(π) is spanned by the matrices Σab. The natural Lorentz invariant
scalar product 〈φ, ψ〉ρ = φ†γ0ψ on C4 induces the product 〈〈X,Y 〉〉ρ =
Tr
(
γ0X†γ0Y

)
on Lin(V). For any representation of the matrices γa that is

unitarily equivalent to the Dirac representation, the orthogonal complement
is spanned by 1, γ5, γa, γ5γa. Hence we have

Dψ = Dψ + Bψ ,

Dψ = dψ + Aψ , A = − i
4
ωabΣab ,

B = χ1 + κγ5 + τaγ
a + ρaγ

5γa ,

(4.8)

where χ, κ, τa, ρa are complex valued one-forms on space-time. We will
require that the Leibniz rule hold for the Dirac vector and axial currents,

9 In the case of non-gravitational interactions, this frame can be fixed once and for all
and the dependence of B on e does not have to be considered.
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(Dψ)γaψ + ψγaDψ = dJa(V ) + ω̃abJ
b
(V ) ,

(Dψ)γaγ5ψ + ψγaγ5Dψ = dJa(A) + ω̃abJ
b
(A) ,

where Dψ := (Dψ)†γ0 and ω̃ab represents a modified connection on the RC
space. Straightforward calculations show that these equations are satisfied
if and only if

λ
ω a

b = ωab + λδab , B = 1
2 λ1 + iµ11 + iµ2γ

5 , (4.9)

where λ := 2 Re (χ), µ1 := Im (χ), µ2 := Im(κ) are real-valued one-forms.
Note the change of labeling — instead of using ,̃ we are now labeling the
effective space-time connection by real-valued one-form λ, on which it de-
pends. Note also that the one-forms µ1 and µ2 do not influence the resulting
connection on the RC space. If non-gravitational interactions were included,
the components of these one-forms could be hidden in the gauge fields cor-
responding to the localization of the global symmetry of the change of phase
ψ → eiαψ and the approximate symmetry under the chiral transformation
ψ → eiαγ

5
ψ. In order not to involve non-gravitational interactions, one

needs to set µ1 and µ2 to zero.
Before imposing a final requirement that the coupling procedure be

ambiguity-free, let us investigate the properties of the effective space-time
connection

λ
ω for arbitrary one-form λ. It is no longer metric. The coefficients

are expressed through the coefficients of the original metric connection by

λ
Γ

ρ
µν = Γ ρµν + δρµλν . (4.10)

In a more mathematically oriented language, it could be defined by

λ
∇X f = X(f) ,

λ
∇X Y = ∇XY + λ(X)Y ,

where f is a function andX, Y are vector fields. Then the action on arbitrary
tensor field is uniquely determined by the requirements of commutativity
with contraction and the Leibniz rule with respect to tensor products. The
action on a (r, s)-tensorial type differential form is given by

λ
D T a1...ar

b1...bs = DT a1...ar
b1...bs + (r − s)λ ∧ T a1...ar

b1...bs

and the action on a spinor field is

λ
D ψ = Dψ + 1

2 λψ .
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The torsion of such a connection is

λ
T
cab = T cab + λaηcb − λbηca . (4.11)

According to the leading idea, we do not want to introduce a new field,
but rather to express the one-form λ through the original connection ω
in such a way that the transformation rule for ω implies the appropriate
transformation rule for λ. It is easy to verify that this goal will be achieved if
and only if λ is a scalar-valued one-form. The simplest possible construction
which fulfills the above mentioned requirements employs the torsion trace

one-form, T = T νµνdx
µ. Let us denote by

+
∇ and

−
∇ the connections

λ
∇

corresponding to the choice λ = T and λ = −T. The second of them
proved already useful in Einstein–Cartan theory. To see this, note that
(4.11) enables one to rewrite the equation connecting torsion to the spin
distribution of matter (2.13) in a particularly simple form

−
T
cab = kS̃abc .

What is more, one can prove the geometric identity

Gab −Gba = −
−
∇c
−
T
cab .

Together with (2.13), these facts allow us to conclude, that

t̃ ab − t̃ ba =
−
∇c S̃abc ,

if the field equations are satisfied. This formula corresponds to the well-
known relation between the canonical energy-momentum tensor and spin
density tensor in flat space, tµν − tνµ = ∂ρS

µνρ.

The connection
+
∇ has not yet been employed in Einstein–Cartan theory.

We wish to assign an even more significant role to it. We postulate that
this is the connection that ought to be used in the procedure of minimal
coupling. Then the flat space divergence of a vector field will pass into

+
∇µ V µ = ∇µV µ + TµV

µ =
◦
∇µV µ ,

which becomes a differential when multiplied by the canonical volume form ε.

In fact, using (4.3) and (4.10) it is easy to verify that
+
∇ is the only connection

of the form (4.10) that makes the coupling procedure unambigues. This
observation completes the argument of uniqueness of our solution in the
case of the Dirac field. It should be noted that the final solution can be
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applied to other field theories as well, although it is not always easy to
find a set of natural restrictions under witch the procedure can be uniquely
derived.

Having the procedure corrected, we do not have to care anymore about
the choice of the flat space Lagrangian from the class of equivalence de-
fined by (3.1). All of them will result in the same theory after gravity is
included. Unlike Saa’s approach, our proposal is very conservative. As we
will see below, it leaves the predictions of the Einstein–Cartan theory almost
untouched.

5. The consequences of the application of the new procedure

Having the procedure established, we can apply it to the Dirac La-
grangian (3.11). It is clear that the result will be the same as the one
that would be obtained by means of MCP, since

+
D ψγaψ − ψγa

+
D ψ = Dψγaψ − ψγaDψ .

Hence, all the predictions of the Einstein–Cartan gravity with fermions, in-
cluding the gravity-induced axial–axial point fermion interaction with a very
small coupling constant, remain valid. The advantage of the new procedure
is that we can use any other equivalent flat Lagrangian as a starting point
(in particular, we are now allowed to use the simplest one, namely (3.3)).
Hence, after the new procedure is adopted, the vector–vector and axial–
vector fermion interactions discussed in [8] do not appear anymore. The
predictions of the theory become unique and perhaps will enable experi-
mental verification after technological barriers are smoothed away in the
future.

For a scalar field nothing will change, as a covariant derivative of a scalar

does not depend on whether we use the connection ∇ or
+
∇.

Let us consider the vector field, described by the flat space Lagrangian
density

Lvector = −1
4FµνF

µν +m2AµA
µ , Fµν = ∂µAν − ∂νAµ ,

wherem is a real parameter. Form = 0, the Lagrangian is reduced to the one
of the electromagnetic field, whereas m > 0 corresponds to Proca field. One
can define a one-form field A = Aµdx

µ and rewrite the derivative-dependent
term as

−1
4FµνF

µνε = −1
2F ∧ ?F , F = dA = dAµ ∧ dxµ . (5.1)

From the last equation it is clear that gravity can be included via MCP in
two different ways. One can either acknowledge A as a scalar-valued one-
form and assume that the exterior covariant differential is just the usual
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differential, DA = dA, or assume that Aµ is a one-form valued function and
do the replacement

dAµ ∧ dxµ → DAa ∧ ea , DAa = dAa − ωbaAb .

In the case of Maxwell field, the second procedure would lead to the breaking
of gauge invariance. Therefore, for Maxwell field, as well as the non-Abelian
gauge fields, the first possibility is usually adopted. In the m > 0 case both
approaches are in principle possible, however the latter one seems more
appropriate, as it results in a reasonable form of the spin density tensor10.
According to the ideas presented in this article, nothing will change in the
m = 0 case (as well as in the case of non-Abelian gauge fields). This is
because the exterior covariant differential of a scalar-valued one-form is just
the usual differential, independently of the choice of a connection. Hence,
as opposed to Saa’s theory, the gauge fields do not couple to torsion in our

approach. In the m > 0 case, the usage of
+
∇ instead of ∇ makes difference,

as we end with the Lagrangian four-form

Lproca = −1
2

+
F ∧?

+
F +m2AaA

aε ,

+
F= F̃ − T ∧A , F̃ = DAa ∧ ea = dA−AaQa .

Te dynamical spin density tensor is then

+
S
abc = Aa

+
F

cb −Ab
+
F

ca +Ad

(
+
F

adηbc−
+
F

bdηac
)
,

where
+
F ab = F̃ab + AaTb − AbTa, F̃ab = ẽa(Ab) − ẽb(Aa) − AcT cab. Had

we used the usual MCP with the connection ∇, we would have obtained the
spin density tensor

Sabc = AaF̃ cb −AbF̃ ca .

Contrary to the Dirac field case, both the spin tensors depend on torsion,
which results in the second equation of (2.13) having a more complicated
structure. It can still be rewritten as a linear equation for the 24 components
of the torsion tensor. However, the corresponding linear operator L(A) may
not be invertible for some values of the field A, which leads to the occurrence
of the well-known torsion singularities [25] in the theory. The determinant of
this operator is det (L(A)) = 2 (2 + kAaA

a)3 in the case of standard MCP

and det (L(A)) = 16 (1− 2kAaAa)
3 if the connection

+
∇ is used. These

10 The first approach leads to vanishing of the dynamical spin density tensor Sabc

(see (2.13)).
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singularities are, therefore, not removed by our procedure, but they are
shifted towards other values of A. It is surprising that the values of A for
which a singularity may appear are of opposite causal character in these
cases.

6. Conclusions

The modified coupling procedure introduced in Section 4.3 provides
a unique method for coupling gravity to other field theories, which is com-
patible with the Poincaré gauge description of the gravitational interaction.
This method is a slight modification of the procedure which could be consid-
ered as the most natural choice for a gauge theory, namely MCP. However,
as opposed to MCP, the results obtained by this method do not depend on
the choice of a flat space Lagrangian from the class of equivalence connected
with the possibility of the addition of a divergence. In particular, this makes
the predictions of EC gravity with fermions unique. They appear to agree
with those derived in earlier accounts for a particular choice of fermionic
Lagrangian. The classical theories of scalar field and gauge fields in the
presence of gravity do not change, if our approach is adopted. For the mas-
sive vector field, the torsion singularities appear to occur for different values
of field than in the standard EC treatment.

There is finally an aesthetic argument which makes our procedure yet
more appealing. The fundamental motivations underlying the standard min-
imal coupling procedure leave certain freedom, when applied to gravity. This
freedom is precisely employed by us to remove the ambiguity. In the standard
treatment of Poincaré gauge theory in which minimal coupling procedure is
used, the above mentioned freedom is ignored.

I wish to thank Wojciech Kamiński, Jerzy Lewandowski and Andrzej
Trautman for helpful comments and Urszula Pawlik for linguistic corrections.
This work was partially supported by the Foundation for Polish Science,
Master grant.

Appendix A

Notation and conventions

Throughout the paper a, b, . . . are orthonormal tetrad indices and µ, ν, . . .
correspond to a holonomic frame. For inertial frame of flat Minkowski
space, which is both holonomic and orthonormal, we use µ, ν, . . . . The met-
ric components in an orthonormal tetrad basis ẽa are g (ẽa, ẽb) = (ηab) =
diag(1,−1,−1,−1). Lorentz indices are shifted by ηab. ε = e0 ∧ e1 ∧ e2 ∧ e3
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denotes the canonical volume four-form whose components in orthonormal
tetrad basis obey ε0123 = −ε0123 = 1. The action of a covariant exterior
differential D on any (r, s)-tensorial type differential m-form

T a1...ar
b1...bs =

1
m!
T a1...ar

b1...bsµ1...µmdx
µ1 ∧ · · · ∧ dxµm

is given by

DT a1...ar
b1...bs : = dT a1...ar

b1...bs

+
r∑
i=1

ωaic ∧ T a1...c...ar
b1...bs −

s∑
i=1

ωcbi ∧ T
a1...ar

b1...c...bs .

The Hodge star action on external products of orthonormal cotetrad one-
forms is given by

? ea = 1
3! εabcde

b ∧ ec ∧ ed , ? (ea ∧ eb) = 1
2! εabcde

c ∧ ed ,
? (ea ∧ eb ∧ ec) = εabcde

d ,

which by linearity determines the action of ? on any differential form.

Appendix B

The principles of equivalence and general covariance in GR

Note that the principle of general covariance, as formulated by Weinberg
on p. 91 of [6], is not really of the same physical content as the principle of
equivalence, formulated on p. 68, although Weinberg claims so. The latter
allows for non-minimal couplings. For example, if we postulated that the
motion of a free falling material particle is determined by the equation

d2xµ

dτ2
+ αRΓµρσ

dxρ

dτ

dxσ

dτ
+ βR

dxµ

dτ
= 0 , (B.1)

where τ(t) =
∫ t
t0

√∣∣gµν (x(t)) dxµdt
dxν

dt

)
|dt is the proper time, R the curva-

ture scalar, Γ represents the Levi–Civita connection and α, β are some real
constants, which we shall call non-minimal parameters, then the principle
of general covariance would not be violated. What about the principle of
equivalence? According to Weinberg, it is formulated by the statement that

at every space-time point in an arbitrary gravitational field it is
possible to chose a “locally inertial coordinate system” such that,
within a sufficiently small region of the point in question, the
laws of nature take the same form as in unaccelerated Cartesian
coordinate systems in the absence of gravitation.
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We will call this a weak formulation of the principle of equivalence. Note
that in a locally inertial coordinate system the Christoffel symbols will vanish
and, therefore, the freedom of choice of the parameter α is not restricted by
such a principle. However, the parameter β has to be set to zero.

Now we wish to stress that in fact Weinberg used another, stronger
formulation of the equivalence principle to derive the predictions of GR.
The stronger principle states that the laws of physics governing the behavior
of matter and test particles in the presence of gravity are derivable from
those that are valid in the absence of gravity by a well established rule.
This rule is that one rewrites the equations of special relativity, originally
given in inertial Cartesian coordinates, in arbitrary coordinates. Then the
connection coefficients, which assume nonzero values in such coordinates
even in flat space, have to be replaced by the connection coefficients of
the curved connection on the final Riemannian manifold. In other words,
in order to pass from flat to curved space, one should merely replace all
the derivatives by the covariant ones. Such a prescription is identical with
what we call the minimal coupling procedure. Note that such a principle
forces both the parameters α and β of (A.B.1) to vanish. It is this strong
formulation that enables one to derive the geodesic postulate, as well as
other concrete principles of GR, and finally makes the theory experimentally
verifiable.
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