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In this contribution three-loop corrections to the quark and gluon form
factor are discussed in massless QCD. They constitute building blocks to the
third-order corrections of a number for physical processes. Furthermore, we
discuss the Higgs–boson–gluon vertex to three-loop order including finite
top-quark mass effects.
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1. Introduction

One of the main tasks of the Large Hadron Collider (LHC) at CERN is
the search for the Higgs boson which is responsible for the particle masses in
the Standard Model and most of its extensions. The theoretical predictions
are currently known up to next-to-next-to-leading order (NNLO), however,
only in the heavy-top quark limit which is based the Lagrange density

L = −H
v
C1 (Gµν)

2 , (1)

where H is the Higgs boson field, v the vacuum expectation value, Gµν the
gluon field strength tensor and C1 the coefficient function incorporating the
residual top-quark mass dependence. Knowing the perturbative expansion
of C1 one can compute the Higgs production cross-section (including real and
virtual corrections) with the help of Eq. (1) which — as compared to the
calculation in the full theory — reduces the number of loops by one unit.

∗ Presented at the FLAVIAnet Topical Workshop, “Low energy constraints on exten-
sions of the Standard Model”, Kazimierz, Poland, July 23–27, 2009.
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In Sec. 2 we provide the virtual corrections of the Higgs–gluon coupling
within the effective theory to the three-loop level, which constitutes together
with the four-loop calculation of C1 [1–3], the first step to the NNNLO
corrections to the Higgs boson production in gluon fusion. Besides the gluon
form factor, Fg, we discuss in Sec. 2 also the fermion form factor, Fq, i.e.
three-loop corrections to the photon–quark vertex in massless QCD. The
NNNLO results for both Fg and Fq have been obtained in Ref. [4].

In Sec. 3 we also consider the Higgs boson production in gluon–gluon
fusion. This time we go beyond the effective theory of Eq. (1) and consider
the Higgs–boson–gluon coupling in the full theory. In order to obtain NNLO
corrections the evaluation of three-loop diagrams is required, which we eval-
uate in a series expansion for large top-quark mass. This calculation has
been performed by two independent groups [5,6] and constitutes a first step
to study the finite top quark mass effects at NNLO.

2. Three-loop fermion and gluon form factors

In this section we consider massless QCD (accompanied by the effec-
tive Lagrangian of Eq. (1)) and discuss the virtual corrections to the pho-
ton quark and Higgs–boson–gluon vertex (see also Ref. [7] and references
therein). It is convenient to extract the tensor structure and define the form
factors Fq and Fg

Γµq = γµFq
(
q2
)
,

Γµνg = (q1 · q2 g
µν − qν1 q

µ
2 )Fg

(
q2
)
, (2)

where q = q1 +q2 and q1 (q2) is the incoming (anti-)quark momentum in the
case of Fq, and Fg depends on the gluon momenta q1 and q2 with polarization
vectors εµ(q1) and εν(q2). Note that q2

1 = q2
2 = 0. Some sample of Feynman

diagrams contributing to Fq and Fg are shown in Fig. 1. Starting from three-
loop level a new class of diagrams occurs, the so-called singlet diagrams,
where the external photon is not connected to the fermion line involving
the final-state quarks (see Fig. 1(b)). Since at three-loop level there are no
counter term contributions to the singlet diagrams and furthermore there is
no corresponding real emission contribution the sum of all diagrams has to
be finite.

In a first step projectors are applied in order to obtain scalar expressions
for the functions Fq and Fg. After the decomposition of the numerator in
order to arrive at a minimal number of scalar products a reduction proce-
dure is applied in order to express each occurring integral as a linear com-
bination of master integrals. For our calculation we applied two different
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(a) (b) (c)
Fig. 1. Sample Feynman diagrams contributing to the Fq ((a) and (b)) and Fg (c)
at three-loop level. Straight and curly lines denote quarks and gluons, respectively.

procedures. The first one has been described in Refs. [8–10], where an inte-
gral representation for the coefficient is provided. The integrals depend on
the exponents of the denominators of the Feynman diagram and the space-
time dimension d. In the recent years a procedure has been developed to
evaluate the resulting parameter integrals in the limit of large d (see, e.g.,
Ref. [11]). Knowing sufficiently many expansion terms the coefficient func-
tion can be reconstructed since (for fixed exponents) it is a rational function
in d. The evaluation of the three-loop vertex corrections profited quite a lot
from the experience gained in the context of the evaluation of the four-loop
two-point functions [12] and the findings of Ref. [13]. In the latter paper it
has been shown that the recurrence relations of n-loop three-point functions
are equivalent to (n+ 1)-loop two-point functions.

The second method has only been applied to the singlet diagrams con-
tributing to Fq. It relies on the idea to combine the Laporta method [14]
with the Gröbner bases technique [15] which has been published in the com-
puter code FIRE [16]. Needless to say, that for the contributions where both
methods have been used complete agreement has been obtained.

We parameterize the results in terms of the bare coupling which al-
lows us to factorize all occurring logarithms of the form ln(Q2/µ2) where
Q2 = −q2 > 0. Furthermore, we cast the results in the form (x = q, g)

Fx = 1 +
∑
n

(αs

4π

)n( µ2

Q2

)nε
F (n)
x . (3)

We refrain from listing the results in term of general SU(3) colour factors,
which can be found in Ref. [4], however, we present for illustration the finite1
part of Fq in the case of QCD where it takes the form:

1 We refer to Refs. [17, 18] for the divergent contribution.
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F (3)
q

∣∣∣∣∣
finite

= −15214694
729

− 1008569ζ2

243
+

910616ζ3

81
+

467815ζ4

216
− 69343ζ2ζ3

81

+
160186ζ5

135
− 17851ζ2

3

81
− 43040081ζ6

15552
+

20X9,1

9
− 8X9,2

9
+

4X9,4

9

+nf

(
23311516

6561
+

524042ζ2

729
− 806584ζ3

729
− 57625ζ4

243
+

7760ζ2ζ3

81

− 107872ζ5

405

)
+n2

f

(
− 2710864

19683
− 248ζ2

9
+

12784ζ3

729
− 166ζ4

81

)

+
80
9

+
200ζ2

9
+

280ζ3

27
− 20ζ4

9
− 1600ζ5

27
. (4)

The term in the last line corresponds to the singlet contribution. The three
constants X9,i take the numerical values X9,1 ≈ 1428.9963678666183591,
X9,2 ≈ 528.0583 ± 0.0326, and X9,4 ≈ −2085.380547 ±0.000025, where
X9,1 is available analytically [19] while X9,2 and X9,4 are known numerically
[4, 19], with the indicated precision.

As already mentioned above the new NNNLO results for the form factors
constitute building blocks for a number of applications. Among them are
the Higgs boson production in gluon fusion, the Drell–Yan process and the
two-jet cross-section in e+e− collisions.

3. Finite top quark mass effects of the Higgs boson production

Also in this section we discuss corrections to the Higgs boson production.
Again three-loop corrections are considered, however, not in the effective
theory but in the full Standard Model including finite top quark mass effects
at NNLO. Sample diagrams are shown in Fig. 2.

Fig. 2. Sample diagrams contributing to the NNLO virtual corrections to gg→h.

The virtual contribution to the partonic cross-section can be cast in the
form

σ̂virt
ggh = σ̂LO

(
1 +

αs

π
δ(1) +

(αs

π

)2
δ(2) + . . .

)
, (5)
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where the LO cross-section is given by

σ̂LO =
GF α2

s

288
√

2π
f0(ρ, ε)
(1− ε)

δ(1− x) , (6)

with x = M2
H/ŝ, where

√
ŝ is the partonic center-of-mass energy. The

function f0 and the analytical results of the first five terms in the ρ =
M2
H/M

2
t → 0 expansion for δ(1) and δ(2) can be found in Ref. [5] (see also

Ref. [6]). We refrain from listing explicit results in this contribution but
discuss the convergence properties in Fig. 3, where the finite part of δ(1) and
δ(2) is shown as a function of ρ. One observes good convergence up to ρ ≈ 3
which corresponds to MH ≈ 1.7Mt.
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Fig. 3. Finite part of δ(1) (left) and δ(2) (right) as a function of ρ. The longer-
dashed lines include successively higher orders in ρ and the solid line corresponds
to the exact result for δ(1).

The real corrections, which are necessary to obtain physical cross-sections,
involve in addition to M2

H/M
2
t also the ratio ŝ/M2

t . Whereas for Higgs
boson masses in the intermediate-mass range the former ratio is small and
an expansion is possible this is in general not true for the latter. An obvious
way out is a clever combination of the expansion for Mt → ∞ and for
ŝ→∞ (the latter limit has been considered in Ref. [20]). Very recently the
real corrections have been evaluated in Ref. [21] in an expansion around the
soft limit and the “matching” of the Mt → ∞ and ŝ → ∞ results has been
performed. Further work is in progress [22].
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