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PRECISION CALCULATIONS IN BR(B̄ → Xsγ)∗
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We briefly summarize the current status of perturbative calculations
at next-to-next-to-leading-order (NNLO) accuracy in the B̄ → Xsγ decay
rate as well as that of non-perturbative power-corrections.
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1. Introduction

Corrections to the B̄ → Xsγ decay are usually described in the frame-
work of an effective theory1,

Leff = LQCD×QED(u, d, s, c, b) +
4GF√

2
VtbV

∗
ts

8∑
i=1

Ci(µ)Oi . (1)

Here, Ci are renormalization scale dependent effective couplings, the so-
called Wilson coefficients, which encode the heavy gauge boson and the
heavy top quark effects. The b-quark scale contributions, on the other hand,
are seen as matrix elements of flavor changing operators,

O1 = (s̄LγµT acL) (c̄LγµT abL) , O2 = (s̄LγµcL) (c̄LγµbL) ,

O3,5 = (s̄LΓ3,5bL)
∑

q

(
q̄Γ ′3,5q

)
, O4,6 = (s̄LΓ3,5T

abL)
∑

q

(
q̄Γ ′3,5T

aq
)
,

O7 =
αem

4π
mb (s̄LσµνbR)Fµν , O8 =

αs
4π

mb (s̄LσµνT abR)Gaµν , (2)

∗ Presented at the FLAVIAnet Topical Workshop “Low energy constraints on exten-
sions of the Standard Model”, Kazimierz, Poland, July 23–27, 2009.

1 In writing (1) we discarded terms proportional to VubV ∗
us since they give only small

contributions to the branching ratio that start at next-to-leading-order (NLO). Sim-
ilar NNLO corrections can therefore be safely neglected.

(45)
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where Γ3 = γµ, Γ ′3 = γµ, Γ5 = γµγνγλ and Γ ′5 = γµγνγλ. Using (1), the
differential decay rate for B̄ → Xsγ can be written as follows,

dΓ =
G2

Fαemm
2
b

256π6mB
|VtbV ∗ts|2

d3q

Eγ

∑
i,j

Ceff
i (µ)Ceff

j (µ)Wij(µ) . (3)

In the equation displayed above, q denotes the momentum of the photon,
Ceff
i are certain linear combinations of Ci (see e.g. [1]), and the Wij describe

the hadronic dynamics. For (ij) = (77) the latter can be written as imaginary
part of a forward scattering amplitude,

W77(µ) = 2 Im
(
i

∫
d4x e−iq·x〈B̄|T

{
O†7(x)O7(0)

}
|B̄〉
)
. (4)

Since the mass of the b-quark is much larger than the binding energy of the
B-meson, which is of the order of Λ ≡ ΛQCD, we can perform an operator
product expansion (OPE) of this time ordered product. Doing so, one finds
that the leading term is the partonic decay rate which gives the dominant
contribution, while the non-leading terms, the so-called power-corrections,
are suppressed by powers of Λ/mb and give non-vanishing contributions
starting from O(Λ2/m2

b)
2. In what follows we describe the state-of-the-art

of perturbative and non-perturbative corrections in the B̄ → Xsγ decay.

2. Perturbative corrections

The calculation of the perturbative corrections can be divided into three
steps. In the first step one has to evaluate the effective couplings Ceff

i at
the high-energy scale µ ∼MW by requiring equality of the Standard Model
and the effective theory Green functions. Defining α̃s(µ) = αs(µ)/(4π), the
effective couplings can be expanded as follows,

Ceff
i (µ) = C

(0)eff
i (µ) + α̃s(µ)C(1)eff

i (µ) + α̃2
s (µ)C(2)eff

i (µ) + . . . . (5)

At NNLO accuracy one has to determine the coefficients C(2)eff
i (µ). For

i = 7, 8 it required performing a three-loop calculation [2] whereas for the
remaining cases i = 1, . . . , 6 a two-loop calculation was sufficient [3].

The second step involves the calculation of the anomalous dimension
matrix γeff which describes the mixing of the operators under renormaliza-
tion. Its knowledge is necessary to solve the effective theory renormalization
group equations for the effective couplings,

2 We stress that equation (4) and its OPE hold only for W77. In all other cases the
Wij defined in (3) contain contributions in which the photon couples to light quarks
(u, d, s, c), and this leads to non-perturbative effects different from that mentioned
above (see Section 3).
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µ
d

dµ
Ceff
i (µ) =

∑
j

γeff
ji C

eff
j (µ) , (6)

and to evolve the latter down to the low-energy scale µ ∼ mb. Performing
a perturbative expansion in the strong coupling constant, the anomalous
dimension matrix takes the following form,

γeff = α̃s(µ)γ(0)eff + α̃2
s (µ)γ(1)eff + α̃3

s (µ)γ(2)eff + . . . . (7)

At NNLO one has to determine γ(2)eff which is actually a 8× 8 matrix,

γ(2)eff =

(
A

(2)
6×6 B

(2)
6×2

02×6 C
(2)
2×2

)
. (8)

The block matrices A and C describing the self-mixing of the four-quark
operators and the self-mixing of the dipole operators at three loops, re-
spectively, have been calculated in [4]. The block matrix B describing the
mixing of the four-quark operators into the dipole operators at four loops
has been determined in [1]. After this calculation the first two steps of the
perturbative calculation were completed, that is the effective couplings at
the low-energy scale µ ∼ mb with resummed logarithms are now known at
NNLO accuracy3.

In the last step one has to calculate on-shell amplitudes of the opera-
tors at the low-energy scale. This is the most difficult part of the NNLO
enterprise and it is still under investigation. In order to see what has been
done so far, and what still has to be done, we write the decay rate for the
partonic decay b→ Xpartonic

s γ as follows,

Γ partonic
∣∣
Eγ>E0

=
G2

Fαemm
5
b

32π4
|VtbV ∗ts|2

∑
i,j

Ceff
i (µ)Ceff

j (µ)Gij(E0, µ) , (9)

where Gij(E0, µ) can again be expanded in terms of α̃s,

Gij(E0, µ) = δi7δj7 + α̃s(µ)Y (1)
ij (E0, µ) + α̃2

s (µ)Y (2)
ij (E0, µ) + . . . . (10)

At NNLO one has to determine the coefficients of α̃2
s (µ) which, however, has

only been done in a complete manner for i = j = 7 [5,6]. Once we neglect on-
shell amplitudes that are proportional to the small Wilson coefficients of the
four-quark penguin operators O3–O6, the remaining cases to be considered
are (ij) = (11), (12), (22), (17), (18), (27), (28), (78), and (88). The large-β0

3 This means large logarithms have been resummed up to O(αn+2
s lnn(mb/MW)).
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corrections are known in all these cases except for (18) and (28) [7–9]. In
addition, effects of the charm and bottom quark masses on the gluon lines
are known in all the cases [10, 11]. The other beyond-large-β0 corrections
have been found only in the limit mc � mb/2, except for the (78) and (88)
cases [12]. This limit has been used to interpolate the unknown beyond-
large-β0 corrections at O(α2

s ) to the measured value of mc ≈ mb/4 [12]. The
result for the branching ratio, for E0 = 1.6 GeV, is given by [13]4

BR
(
B̄ → Xsγ

)
SM

= (3.15± 0.23)× 10−4 (1S scheme) . (11)

The theoretical uncertainty of this NNLO estimate is at the same level as
the uncertainty of the current world average reported by HFAG [14]5,

BR
(
B̄ → Xsγ

)
exp

= (3.52± 0.23± 0.09)× 10−4 , (12)

which is furthermore expected to come down to the 5% level at the end of
the B-factory era.

Here a remark concerning the overall normalization of the theoretical
prediction is in order. To reduce parametric uncertainties stemming from
the CKM angles as well as from the c- and b-quark masses, the partonic
decay rate given in (9) is usually normalized using a combination of the
B̄ → Xclν̄ and B̄ → Xulν̄ decay rates which is reflected by the appearance
of the semileptonic phase-space factor

C =
∣∣∣∣VubVcb

∣∣∣∣2 Γ
(
B̄ → Xclν̄

)
Γ
(
B̄ → Xulν̄

) (13)

in the analytical expressions [17]6. Unfortunately, the determination of mc

and C from a fit to the measured spectrum of the B̄ → Xclν̄ decay in the 1S
scheme [19] differs from that in the kinetic scheme [20]7. Using the values
for mc and C of the latter determination results in a higher central value for
the B̄ → Xsγ decay rate [21],

BR
(
B̄ → Xsγ

)
SM

= (3.25± 0.24)× 10−4 (kinetic scheme) . (14)

The difference of mc and C in the 1S and kinetic scheme is likely to be
due to different input data, differences in the fit method, and treatment

4 For a discussion of the residual renormalization scale dependence of the branching
ratio at NNLO we refer the reader to [13].

5 This average includes the measurements from CLEO and BaBar and Belle [15]. The
recently published update by Belle [16] has not been taken into account.

6 The denominator Γ (b→ ulν̄) is already known at NNLO accuracy [18].
7 In [13] the values for mc and C from [19] were adopted.
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of theory errors. In this respect, supplementing the fit, for example, by the
determination of the c- and b-quark masses from sumrules [22] could possibly
be helpful to reduce the discrepancy of C in both schemes.

We should also remark that not all of the aforementioned contributions
to the function Gij entered the analysis of [13]. These are the massive
fermionic corrections presented in [6, 10, 11] and the large-β0 contributions
for (ij) 6= (77) from [8, 9]8. These contributions will be included in a future
update together with so far unknown contributions, which is, for example,
the complete knowledge of G78 [23]. Also the complete calculation of G27

for mc = 0 is underway [24]. Especially the latter will prove useful in
the reduction of the uncertainty stemming from the interpolation in mc.
Apart from the NNLO corrections also tree-level diagrams with the u-quark
analogues of O1,2 and the four-quark operators O3−6 have been neglected so
far [25]. The numerical effect of all of these contributions on the branching
ratio is or is expected to remain within the uncertainty of the NNLO estimate
given in (11).

Finally, we should mention that there are also cutoff-enhanced correc-
tions which matter close to the endpoint [26]. However, as demonstrated
in [21], the resummation of the cutoff-enhanced logarithms overestimates
the effect of the O(α3

s )-terms for E0 . 1.6 GeV. Therefore, the prediction
for the branching ratio given in (11) should, at present, be considered as
more reliable.

3. Non-perturbative corrections

Since the perturbative calculations in B̄ → Xsγ are now performed at
NNLO, the non-perturbative corrections become more important. In general
well under control are the power-corrections stemming from the OPE of the
time ordered product contained in (4); they are known at O(Λ2/m2

b) [27]
and O(Λ3/m3

b) [28]. All the otherWij with (ij) 6= (77) contain contributions
in which the photon couples to light quarks, and that causes the breakdown
of an analogous OPE. In this case non-perturbative collinear effects [29] as
well as power-corrections at O(Λ2/m2

c) show up [30]. The combined effect of
all of the aforementioned non-perturbative corrections is of around 3% in the
branching ratio. Besides, non-perturbative effects appearing at O(αsΛ/mb)
show up when the photon couples to light quarks. Their size is not known
at present, and hence a 5% uncertainty related to all the unknown non-
perturbative effects has been included in (11). The size of this uncertainty is
supported by the estimate of the O(αsΛ/mb)-corrections in the interference
of the electro- and chromomagnetic dipole operators performed in [31]. As

8 Also the mixing of the four-quark operators O1−6 into the chromomagnetic dipole
operator O8 [1] was not included in [13].
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pointed out in references [31, 32], the magnitude of the effect considered
in [31] could be probed by an improved measurement [33] of the isospin
asymmetry

∆0− =
Γ
(
B̄0 → Xsγ

)
− Γ

(
B̄− → Xsγ

)
Γ
(
B̄0 → Xsγ

)
+ Γ

(
B̄− → Xsγ

) . (15)

Finally, we note that a non-perturbative uncertainty appears also when ex-
trapolating the three different measurements performed at CLEO, BaBar
and Belle down to the common lower cut E0 = 1.6 GeV in the photon
energy. It is accounted for in the error of the world average given in (12).

4. Conclusions

At present the uncertainties in the branching ratio of B̄ → Xsγ are
on the same level on both the theoretical and experimental side. Thanks
to the ongoing calculations of the perturbative corrections, the uncertainty
stemming from this part will further reduce. However, to reach the 5%
level or even less on the theoretical side, a better understanding of the non-
perturbative power-corrections at O(αsΛ/mb) is required.
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to this workshop. I also would like to thank P. Gambino, and especially
M. Misiak, for comments on the final version of this manuscript. This work
was supported by MIUR under contract 2004021808-009 and by the Euro-
pean Community’s Marie-Curie Research Training Network under contract
MRTN-CT-2006-035505 “Tools and Precision Calculations for Physics Dis-
coveries at Colliders”.
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