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ASSORTATIVITY IN RANDOM LINE GRAPHS∗
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We investigate the degree–degree correlations in the Erdös–Rényi net-
works, the growing exponential networks and the scale-free networks. We
demonstrate that these correlations are the largest for the exponential net-
works. We calculate also these correlations in the line graphs, formed from
the considered networks. Theoretical and numerical results indicate that all
the line graphs are assortative, i.e. the degree–degree correlation is positive.

PACS numbers: 64.60.aq, 02.10.Ox, 05.10.Ln

1. Introduction

A network of tennis players is formed when we link two players who met
in the same game. Alternatively we can form a network of tennis games;
two games are linked if the same competitor played in both of them. The
same can be told on boxers and football teams. This construction is known
as a line graph [1–3]. Each graph can be converted to its line graph. Under
this transformation links become nodes, and two nodes of the line graph
are linked if the respective links in the original graph share a node. The
mathematical representation of a network by its line graph can be of interest
in the science of complex networks [4]; for some applications of line graphs
see [5–11].

Our concern in line graphs is due to their specific topology. Recently we
shown that line graphs formed from the Erdös–Rényi networks, the growing
exponential networks and the Barabási–Albert scale-free networks are highly
clustered, with the clustering coefficient C higher than 0.5 [12]. This makes
the line graphs to be potentially attractive for modeling of social networks,
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which are also highly clustered [13]. Here we focus on the degree–degree
correlation in the line graphs, formed from the three kinds of networks listed
above. Once this correlation is positive, nodes of high degree are more
frequently linked to nodes of high degree; such networks are termed to show
assortative mixing [14]. If the degree–degree correlation is negative, the
mixing is termed disassortative.

In our former calculations [12], theoretical calculations of the cluster-
ing coefficient C in the line graphs were based on the assumption, that
there is no degree–degree correlations in the initial networks. The accor-
dance of the theoretical results with the simulations was quite reasonable at
least for well connected networks, with mean degree larger than 10. Still,
some differences could be observed for the exponential networks (Fig. 4
in [12]). Our aim here is (i) to compare the degree–degree correlations in the
Erdös–Rényi networks, the exponential networks and the scale-free networks,
(ii) to calculate these correlations in the line graphs, obtained from the three
kinds of networks. The results are presented in the form of 〈k′(k)〉, where
k′(k) is the degree of a neighbour of a node of degree k.

Next section is devoted to the numerical calculations of the degree–degree
correlations in the initial networks. In Section 3, analytical calculations of
〈k′(k)〉 for the line graphs are presented. In Section 4 we show the corre-
lations in the line graphs, obtained numerically. Last section is devoted to
conclusions.

2. Numerical calculations for the initial networks

The original Erdös–Rényi network is generated from N = 104 nodes; a
link is placed between two nodes with the probability p. For the exponential
and scale-free networks the algorithm starts from a fully connected cluster
of M nodes. In a series of steps new nodes are added, each with M edges.
Each edge of this node is connected to a randomly chosen node. For the
scale-free network we have to use the preferential attachment; nodes are
selected proportionally to their degree. The size of the initial exponential
and scale-free networks is again N = 104 nodes.

To evaluate the degree–degree correlation we check how the average de-
gree k′ of the nearest neighbours of nodes with degree k depends on k.
Numerical calculation begins with a search for nodes with degree k. Then,
the average degree is calculated of all nearest neighbours of these nodes.
Those steps are repeated for subsequent values of k.

In Fig. 1 we show exemplary results of the degree–degree correlations
in the initial networks of three kinds. As it is shown there, the slope of
obtained curve for the Erdös–Rényi network is close to zero. This means,
that these networks show no degree–degree correlations, i.e. no assortativity
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Fig. 1. Degree–degree correlations in the the Erdös–Rényi network (squares), the
Barabási–Albert network (circles) and exponential network (rhombs) for 〈k〉 = 50,
measured by the curves 〈k′(k)〉, where k′ is the degree of a neighbour of a node of
degree k.

at all. This result is a natural consequence of the construction of this kind of
networks. On the contrary, the results for the exponential networks indicate
that the degree–degree correlations are positive: more connected nodes are
nearest neighbours of also more connected ones. The result is in accordance
with analytical [15, 16] calculations. The results for the Barabási–Albert
networks are more fuzzy. Still, except perhaps the case of small ks, the
correlations are not observed. This observation coincides with the conclusion
of [14], obtained from analytical method.

3. Analytical calculations for the line graphs

The assortativity of the line graph is to be investigated by the calculation
of the mean degree of a node, converted from a link, which is a neighbour of
another node of degree k, converted also from a link. These two links shared
a node in the initial graph. The notation is as follows: the first link joined
nodes of degrees k1 and k2, and the second link joined nodes of degrees k2

and k3. Now these links are nodes, with degrees k1 + k2− 2 and k2 + k3− 2,
respectively. We assume that there is no degree–degree correlations in the
initial graph. Then the mean degree 〈k′(k)〉 of a neighbour of a node of
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degree k in the line graph can be found as

〈
k′(k)

〉
=

∑
k1,k2,k3

k1P (k1)k2P (k2)k3P (k3)(k1 + k2 − 2)δk,k2+k3−2∑
k1,k2,k3

k1P (k1)k2P (k2)k3P (k3)δk,k2+k3−2
, (1)

where P (k) is the degree distribution for the initial graph. We use the
Kronecker delta to eliminate the sums over k2. Then, the sums over k1 are
from one to infinity, and the sums over k3 from one to k.

For the Erdös–Rényi networks P (k) is Poissonian; let us denote 〈k〉 = λ.
We get 〈

k′(k)
〉

= λ+ 1 + k − 2k−1(2 + k)− 1− k
2k − 1

(2)

what is close to λ+ k/2 for large k.
For the exponential networks with the minimal degree M the degree

distribution is P (k) ∝ ck, what gives 〈k〉 = 2M , c = M/(1 +M) and

〈k′(k)〉 =
2k + 5〈k〉 − 2

4
. (3)

In this case the sums in Eq. (1) start from ki = M , i = 1, 2, 3. After
eliminating the sum over k2, the sum over k3 ends at k3 = k −M + 2.

For the scale-free networks P (k) ∝ k−3 and the obtained series does not
converge. For finite networks we can use Eq. (1) with an upper cut-off of
k1, determined by the system size [18]. The obtained plot is practically the
same for the cut-off between 103 and 104. The limits of summations are the
same as for the exponential networks.

4. Numerical calculations for the line graphs

The line graphs are constructed from the initial networks as follows. In
the connectivity matrix of the initial network, the number of units above the
main diagonal are substituted by their consecutive numbers. The maximal
number is equal to the number of nodes in the line graph. In the connectivity
matrix of the line graph, two nodes i and j are linked if the numbers i and
j are in the same row or the same column in the renumbered connectivity
matrix of the initial network. The same algorithm of construction of the line
graphs was applied in [12].

The size of the initial network is equal 104. The calculations are per-
formed for the line graphs of size dependent on the size, type and connec-
tivity of the initial network. Then, the line graphs constructed from the
Erdös–Rényi networks of the mean degree 〈k〉 = 5, 10, 20 and 50 are of size
of 25, 50, 100 and 250 thousands, respectively. For the initial exponential
and the Barabási–Albert networks of degree 〈k〉 = 4, 10, 20 and 50 the sizes
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of the line graphs are respectively 20, 50, 100 and 250 thousands. The de-
gree distribution of the obtained line graphs was described in details in [12];
briefly, the line graphs retain the degree distributions of the initial networks.

The degree–degree correlations in the line graphs, obtained numerically,
are shown in Figs. 2, 3 and 4 for the initial networks of three kinds: the
Erdös–Rényi networks, the exponential networks and the Barabási–Albert
networks, respectively. In the same graphs the theoretical curves are shown,
derived from Eq. (1) with an assumption, that there are no degree–degree
correlations in the initial networks. However, as we see in Fig. 1, this assump-
tion is perfectly true only in the case of the Erdös–Rényi networks. Then
it is not surprising, that the numerical results on the degree–degree corre-
lations agree perfectly with theory only for this kind of networks (Fig. 2).
As the exponential networks show assortativity (Fig. 1), the degree–degree
correlations in the line graphs formed from the exponential networks dif-
fer from the theoretical data (Fig. 3). Finally, the noisy character of the
correlations in the initial scale-free networks, observed in Fig. 1, has some
counterpart in Fig. 4. Moreover, in the latter case the numerical curves show
some systematic deviation from theory till some value of the degree k. One
of possible explanations of the observed deviations could be the influence of
hubs. We checked that this part of data differ from one generated graph to
another.
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Fig. 2. Degree–degree correlations in the line graphs constructed from the Erdös–
Rényi networks. The data shown are obtained for 〈k〉 = 10, 20 and 50 (circles,
triangles and rhombs, respectively). Lines are obtained from Eq. (2).
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Fig. 3. Degree–degree correlations in the line graphs constructed from the growing
exponential networks. The data shown are obtained for 〈k〉 = 10 and 50 (circles
and triangles, respectively). Lines are obtained from Eq. (3).
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Fig. 4. Degree–degree correlations in the line graphs constructed from the growing
Barabási–Albert networks. The data shown are obtained for 〈k〉 = 10 and 50
(circles and triangles, respectively). Lines are obtained from Eq. (1).
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5. Conclusions

Our numerical results on the 〈k′(k)〉 for the original networks indicate
that the degree–degree correlations are remarkable for the exponential net-
works, but they are negligible for the Erdös–Rényi networks and the Barabási
–Albert scale-free networks as long as the mean degree is large enough.
These results coincide with the former calculations of the clustering coeffi-
cient C [12], where the largest difference between theoretical and numerical
results were found for the exponential networks. These results agree also
with analytical calculations of other authors [14–16]. Similar numerical cal-
culations for the growing networks were performed with the same results [17].
A simple explanation of the positive degree–degree correlations in the expo-
nential networks could be that the node degree increases with its age, and
the nodes most old are connected to each other.

The degree–degree correlations in the exponential networks allow to in-
terpret also the results on the 〈k′(k)〉 dependence in the line graphs. As
before, the theoretical calculations are performed with the assumption that
the correlations are absent in the initial networks. We know that this as-
sumption is not true for the exponential networks. As a result, the theoret-
ical curves 〈k′(k)〉 for the line graphs formed from the exponential networks
differ from the same curves obtained from the numerical simulations. On the
contrary, the accordance is quite good for the Erdös–Rényi networks, where
the degree correlations are absent. For the scale-free networks of finite size,
theory gives a linear plot 〈k′(k)〉. The simulation for these networks gives a
broad distribution of points, and therefore the accordance is only qualitative.

Summarizing, all the investigated line graphs are assortative. These
degree–degree correlations can be understood as a consequence of the fact
that the neighboring nodes in the line graphs are formed from links sharing
a common node in the initial graph. The degree of this common node
contributes to the degree of both neighboring nodes in the line graph.

The calculations were performed in the ACK Cyfronet, Cracow, grants
No. MNiSW/SGI3700 /AGH /030/ 2007 and MNiSW/SGI3700/AGH /031/
2007. This work was partially supported from the AGH UST project No.
10.10.220.675.
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