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We study a cellular automaton opinion formation model of Ising type,

with antiferromagnetic pair interactions modeling anticonformism, and fer-
romagnetic plaquette terms modeling the social norm constraints. For a
sufficiently large connectivity, the mean-field equation for the average mag-
netization (opinion density) is chaotic. This “chaoticity” would imply ir-
regular coherent oscillations of the whole society, that may eventually lead
to a sudden jump into an absorbing state, if present. However, simula-
tions on regular one-dimensional lattices show a different scenario: local
patches may oscillate following the mean-field description, but these oscil-
lations are not correlated spatially, so the average magnetization fluctuates
around zero (average opinion near one half). The system is chaotic, but
in a microscopic sense where local fluctuations tend to compensate each
other. By varying the long-range rewiring of links, we trigger a small-world
effect. We observe a bifurcation diagram for the magnetization, with pe-
riod doubling cascades ending in a chaotic phase. As far as we know, this
is the first observation of a small-world induced bifurcation diagram. The
social implications of this transition are also interesting. In the presence
of strong “anticonformistic” (or “antinorm”) behavior, efforts for promoting
social homogenization may trigger violent oscillations.
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1. Introduction

Social norms are the basis of a community. Social norms are often
adopted and respected even if in contrast with an individual’s immediate
advantage, or, alternatively, even if they are costly with respect to a “naive”
behavior. Indeed, the social pressure towards a widespread social norm is
sometimes more powerful than a norm imposed by punishments.

On the other hand, it is well known that the establishment of social
norms is difficult to plan, and their imposition is hard to be fulfilled. This
problem has been affronted by Axelrod in a game-theoretic formulation [1],
as the foundation of the cooperation and of the society itself. Axelrod’s
idea is that of a repeated game. Although in a one-shot game it is always
profitable to win not following any norm, in a repeated game there might
be several reasons for cooperation [2], the most common ones are direct
reciprocity and reputation. In all these games, the crucial parameters are
the cost of cooperation with respect to defeat, and the expected number
of re-encounters with one’s opponent or the probability that one’s behavior
will become public. One can assume that these aspects are related to the
size of the local community with which one interacts, and on the fraction
of people in this community that share the acceptance of the social norm.
Indeed, the behavior of a spatial social game is strongly influenced by the
network structure [3].

The previous approach assumes perfect rationality of agents, and does
not take into consideration “irrational” tendencies like for instance education.
It is well known that a given predisposition towards conformism or anticon-
formism (i.e., the education by parents, school and the social community)
may influence the acceptance of a given social norm.

In this paper we model the dynamics of the acceptance of a social norm
in a community with different degrees of conformism or anticonformism. We
shall consider a simplified cellular automata model, already introduced in
Ref. [4]. See Ref. [5] for a detailed review of models of social dynamics.

2. Cellular automata model

Let us denote by si = si(t) the opinion of individual i at time t. We
consider the case of two opinions in competition si ∈ {0, 1}. We can switch
to Ising-like variables (spin) σi ∈ {−1, 1} by the transformation

σi = 2si − 1 .

The individual opinion evolves in time according to the opinions of neigh-
bors, identified by an adjacency matrix ai,j ∈ {0, 1}. This matrix defines
the network of interactions and is considered fixed in time. An individual
may be part of his neighborhood.
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The neighborhood of an individual i is the set of individuals j such that
ai,j = 1. The connectivity ki of individual i is the number of nonzero entries
in ai,j , i.e.,

ki =
∑

j

ai,j .

In the following, we shall consider uniform neighborhoods with connec-
tivity k, where the actual neighborhood can be either regular

ai,j =

{
1 if j − i < k ,
0 otherwise ,

or partially rewired, where a fraction p of the nonzero entries of each row of
ai,j is set to zero, and replaced with a randomly chosen j′ (with ai,j′ = 0),
setting ai,j′ = 1.

We choose to assign equal weight to all neighbors, so we define the local
field (social pressure) hi as

hi =

∑
j ai,jsj

ki
. (1)

The local field takes values between 0 and 1. We might also add an external
fieldH, modeling written or broadcasting media, but in this study we always
keep H = 0.

We are modelling here a completely uniform society, i.e., we assume that
the individual variations in the response to stimuli are quite small. Moreover,
we do not include any memory effect, so that the dynamics is completely
Markovian.

The effects of the social pressure is assumed to be proportional to the
social field. The evolution is defined by the transition probabilities

τ(1|hi) ,

denoting the probability of observing a spin si(t+ 1) = 1 given a local field
hi at time t. Clearly, τ(0|hi) = 1− τ(1|hi).

By denoting by s a spin configuration (s1, s2, . . . ), and by P (s, t) the
probability of observing it at time t, we have

P (s′, t+ 1) =
∑

s

W (s′|s)P (s, t) (2)

with
W (s′|s) =

∏
i

τ(s′i|hi) ,

and hi given by Eq. (1).
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If no transition probability is zero or one, we can map the Markov matrix
W onto a dynamic equilibrium model, of Ising type [6].

Eq. (2) may be equivalently written using restricted distributions. Let us
call pn(si, . . . , si+n; t) the (restricted) probability of observing the sequence
si, . . . , si+n at time t, defined as

pn(si, . . . , si+n; t) =
∑

sj :j /∈{i,...,i+n}
P (s1, . . . , si, . . . , si+n, . . . ; t) .

By assuming spatial uniformity, the pn do not depend on the index i. The
quantity p1(1, t) is the usual density, that will be denoted by c.

Let us consider as an example the one-dimensional regular lattice case
with uniform connectivity k = 2, ai,i = ai,i+1 = 1. Using the restricted
distributions, the evolution equation of the system is given by the infinite
hierarchy

p1(s′1; t+ 1) =
∑
s1,s2

p2(s1, s2; t)τ(s′1|s1, s2) ,

p2(s′1, s
′
2; t+ 1) =

∑
s1,s2,s3

p3(s1, s2, s3; t)τ(s′1|s1, s2)τ(s′2|s2, s3) ,

p3(s′1, s
′
2, s
′
3; t+ 1) = . . . ,

(3)

where for readability (and generality) we have written τ(s′1|s1, s2) instead of
τ(s′1|(s1 + s2)/2).

3. Phase transitions in uniform societies

Let us express the transition probabilities as

τ(1|h) =


ε if h < q ,

1
1 + exp(−2J(2h− 1))

if q ≤ h ≤ 1− q ,
1− ε if h > 1− q ,

(4)

shown in Fig. 1. In this way we model a standard dynamic Ising model with
ferromagnetic (for J > 0) or antiferromagnetic (J < 0) interactions, with
plaquette terms given by ε1. For ε = 0 (infinite plaquette terms) we have
the absorbing states s = 0 and s = 1 if the social pressure is above (below)
the threshold 1− q (q), respectively.

1 A similar model can be defined using a standard Hamiltonian formalism by including
ferromagnetic plaquette terms proportional to (2h− 1)3 or higher odd powers.
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Fig. 1. Transition probabilities τ(1|h) (Eq. (4), thick dashed line) and return map
f(c) (Eq. (5), thick continuous line) as a function of c. Some iterations of the map
are also shown (thin continuous line) and the bisectrix (dash-dotted line). The
threshold values q and 1 − q are marked by thin dashed vertical lines, and the
values ε and 1− ε by thin dashed horizontal lines. Here k = 20, q = 0.1, J = −3,
ε = 0.2.

In one dimension, with k = 3, 1/3 < q ≤ 1/2 and ε = 0 this model
exhibits a nontrivial phase diagram [7], with two directed-percolation tran-
sition lines that meet a first-order transition line in a tricritical point, be-
longing to the parity conservation universality class. Essentially, we have
the stability of the two absorbing states for J > 0 (ferromagnetic interac-
tions, conformistic society, ordered phase), while for J < 0 (anti-ferro and
anti-conformistic) the absorbing states are unstable and a new, disordered
active phase is observed. This scenario corresponds essentially to the sim-
plest mean-field picture. The interpretation of mean-field predictions is that
0 < c < 1 corresponds to the active phase, which is microscopically chaotic,
with the appearance of transient correlated patches (“triangles”). This is due
to the presence of the unstable absorbing states: occasionally a patch of sites
“fall” into one of these states. The local absorbing state can be abandoned
only by “erosion” at boundaries, and this originates the “triangular” pattern.

The model has been studied also in the one-dimensional case with larger
neighborhoods [8]. In this case we observe again the transition from an
ordered to an active, microscopically chaotic phase, but this transition occurs
through a disordered phase, with no apparent structure in the time-space
pattern, which is moreover insensitive to variations of J . Indeed, if the
system “falls” into a truly disordered configuration, then h is everywhere
equal to 0.5 and the transition probabilities τ become insensitive to J and
equal to 0.5, Eq. (4). This disordered regime is therefore different from the
“microscopically chaotic” one.
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4. Mean-field chaotic behavior

The mean field approximation consists in truncating the previous hier-
archy, Eq. (3), at a given order by factorizing the distribution probabilities.
At lowest order, for a uniform connectivity k, one gets

c′ = f(c) =
k∑

v=0

(
k

v

)
cv(1− c)k−vτ(1|v/k) , (5)

which is also shown in Fig. 1. In this approximation, the return map Eq. (5)
may become chaotic, for antiferromagnetic couplings (J < 0) and sufficiently
large neighbors, see Fig. 1. Notice that in this case, we do not have absorbing
states, but the plaquette terms are necessary to give origin to the chaotic
oscillations.

By varying J , one can observe a bifurcation diagram of “logistic” type
(period doubling) as shown in Fig. 2.

��������������

� � � � � � �
	
 ��


�
Fig. 2. Mean field bifurcation diagram of Eq. (5) for 0 ≤ −J ≤ 6 and k = 20,
q = 0.1, ε = 0.2. Transient of 100 time steps, and plot of 10 iterations for 4
random initial conditions.

The connectivity k plays a fundamental role. As shown in Fig. 3 for
J = −6, chaotic oscillations occur only for some values of k. For J = −6,
k = 20 corresponds to an almost compact chaotic region, near to a window
with a strongly periodic behavior.

Since we have approximated the behavior of an extended system with a
scalar equation, we have imposed spatial homogeneity, which is not generally
observed. Better approximations are obtained by replacing Eq. (5) with a
spatial, coarse-grained description as follows

c(t+ 1) = f(c) +D
∂2c

∂x2
+ η
√
c(1− c) , (6)
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where x represent the coarse-grained space index, c = c(x, t), D a diffusion
coefficient, that also plays the role of a surface tension term that tends to
make the system homogeneous. The term η

√
c(1− c) represents the local

fluctuations of c. One can assume that it can be approximated by a white,
delta-correlated noise term. This last term vanishes in correspondence of
the absorbing states.

k

c(
∞

)
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Fig. 3. Mean field bifurcation diagram of Eq. (5) for J = −6 and varying k, q = 0.1,
ε = 0.2. Transient of 100 time steps, and plot of 10 iterations for 20 random initial
conditions.

If the mean field part f(c) converges towards an absorbing state, the
dynamics is given by the competition between the diffusion and the noise
term, and this produces the usual directed-percolation (or parity conserva-
tion) phase transition, for which the presence of a stable, locally attracting
absorbing state is essential [9]. Far from the absorbing states (or if the
absorbing states are not present, ε > 0) the noise term is irrelevant.

It is expected that a behavior more similar to that of mean-field can
be observed if the diffusion term (or an equivalent mechanism) increases
the spatial homogeneity. This is usually achieved in theoretical physics by
increasing the dimensionality of the system, but this mechanism is unlikely
to be observed in social networks.

In real society, people are rarely arranged in a one-dimensional lattice.
There are many proposed structures for social networks, but one feature, the
small-world effect is generally present and its effect is that of an increasing
spatial homogeneity.
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5. Small-world bifurcations
The Watts–Strogatz model [10] is one of the simplest network models ex-

hibiting the small-world effect which allows to smoothly change from a regu-
lar to a random lattice. We have therefore simulated the microscopic system
on a regular one-dimensional lattice where a fraction p of links are rewired
at random, and measured the behavior of the density c(t). Its asymptotic
value, for large t, is denoted c(∞).

In Fig. 4, we show the return map (c(t + 1) vs. c(t)) of the density of
opinion 1 as results from the actual simulations, together with the mean-field
predictions, for various values of p. One can see that for p = 0, the density
simply fluctuates around its mean value, 0.5. By increasing the fraction of
long-range links, the distribution of points approaches more and more the
mean-field predictions.
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0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

c′

c

+
+

+
+

+

+

+

+

+

+

+

+

+

+

+
++

+

+

+

+

+

++ +

+

+

+

++

+

+

+

+

+

+

+
+

+

+

+

+ +

+

+

+
+

+++

+
+

+
+ +

+++
+

+

+

+

+

+

+
++

+
+

+

+

++
+

+

+

+ +

++

+

+

+

+

+
+

+

+
+

+ +

+

+
+

+
++++

+

+
+ +++

+

+

+
+

+
++ +

+

+

+ ++
+

+

++ +++++ +

+

+
+

+

+

+
+

+
+ +

+
+ ++ +

+
+

+
++

+ +
+

+

+

+
+

+
+

+

+

+

+

+

+
+ +
+

+

+
+

+

+

+

+

+

+

+

+
++

+
+

+

+
+

+ +
++

+

+
+

+

+

++

+

+

+ +
+

+++
+

+

+

+

+

+

+

+

+

++ +

+

+

+

+ +

++
+

+

+

+

+

+

+
++ +++ +

+ +
+

+
+

+

+

+ +

+

+

+

+

+

+

+

+

+
+

+
+

+

+ +

+
+

+

+

+
+

+

+

+

+

+ +

+

+
+

+

+

+

+

++

+

++

+

+

+

+
+

+
++
+

+
+

+ +
+

+

+

+
+

+

+

+

+

+++++
+

+

+

+
+ ++

+

+

+

+

++

+

+

+

+
+

+

+
+++

+

+
+

+

+

+

+
+

+
+

+

+

+

+

+

+

+ +
+

+ +
+

+
+

+++

+
+

+
+

+
+

+

+

+

+

+
+

+

+

+
+

++
+ +

++ +
+

+
+ +

+

+
+

+
+

+
+

+

+

+

+

+

+

0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

c′

c

+++
+ +

+
+

+ +
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+ +
+

+ +

+

+
+

+
++++

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+ ++ +

+
+

++
+

+
+

+
+

+

+
+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+ +
+

+
+

+

+

+

+

+

+

+

+
+

+

+

+

+
+ +

+
+

+ ++ +
+ +

+
+

+
++++ ++

+
+ +

+
+++

+ +

+

+

+

+

+
+ ++

++
+ +
+

+
+ +

+

+

+

+

+
+

+

+

+

+

+
+

+

+

+

+

+

+

+

+
+

++

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+ +
+

+

+

+
+ +

+++
+

++
+ +

+

+

+

+

+

+

+

+

+

+

+

+ +
++ ++

+
+

+
++

+
+

+

+

+

+

+

+

+

+

+++
+

+

+
+

++ ++++
+

+

+
+

+
++ +

+
+

+
+

++

+

+

+

+

+

+

+

+

+

+

+

+

++++
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+
+ +

+

+
+

+
+

+

+
+

+

+
++

+

+

+

+

+

p = 0.25 p = 0.4

0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

c′

c

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

c′

c

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

p = 0.5 p = 1

0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

c′

c

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

c′

c

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

Fig. 4. Density (c) of opinion 1 from microscopic simulations (crosses) plotted as
return map [c(t + 1) vs. c(t)] and mean-field predictions for various values of the
long-range connection probability p. Here J = −3, k = 20, q = 0.1, ε = 0.2,
N = 1000, transient of 1000 time steps and plot of 200 iterations.
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We show in Fig. 5 the bifurcation diagram obtained by increasing the
probability of long-range connections, p, for different values of J .
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Fig. 5. Small-world bifurcation diagram for J = −2, . . . ,−6, k = 20, q = 0.1,
ε = 0.2, N = 5× 105, transient of 2000 time steps and 2 different initial conditions
plotted for 20 iterations.

By comparing the plots of Fig. 2 and Fig. 5 one can see that one has close
resemblance between the bifurcation induced by J and that induced by p.
However, we were not able to find an analytic mapping. Notice that this
hypothetical map is nonlinear: the first bifurcation occurs at larger values
of p when decreasing J , but the second bifurcation moves in the opposite
direction.

For p above (roughly) 0.8, the distribution of points corresponds to that
of mean-field, so one can assume that the small-world threshold for the
chaotic oscillations of these models occurs at high values of the fraction of
rewired links p, differently from the usual small-world effect.

For J > 0 the system is “ferromagnetic” (the transition probabilities
are monotone with c, and so is c′(c). Therefore, there are at most three
fixed points corresponding to the intersection of the curve c′(c) with the
bisectrix (one for c = 0.5 and two symmetrically placed). By increasing J
a bifurcation appears (not reported here), very similar to that observed in
an Ising model, but the branches corresponds to stable fixed points, not to
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cycles as for J < 0. This scenario is confirmed by numerical simulations.
For p = 0, the system is ferromagnetic and finite-range, it is expected that
this bifurcation is really stable only in the presence of absorbing states, i.e.,
for ε = 0, while for other values of ε it is only a metastable state (in real
simulations). However, for p > 0 the system is actually infinite-range and
therefore a phase transition can be present also in one-dimensional systems
with finite interaction terms. It might be that a transition from metastable
to stable states occurs for some finite values of p, even though we suspect
that the threshold is for p → 0. We have not investigated this aspect in
detail.

6. Conclusions

We have studied an opinion model that exhibits, at the mean-field level,
a period-doubling cascade to chaotic oscillations, by varying the coupling
parameter J . The observed quantity is the average density of opinion 1, c.
Actual simulations on a one-dimensional lattice, in the absence of absorbing
states or in the “active” phase, show microscopic chaos, i.e., incoherent local
oscillations; so that the density c fluctuates around 0.5.

By rewiring a fraction p of local connections to a random site, we trigger
a small-world effect: the density c exhibits a bifurcation diagram that resem-
bles that obtained by varying J . These small-world induced bifurcations are
consistent with the general trend: long-range connections induce mean-field
behavior. However, this is the first observation of such effect for a system ex-
hibiting a chaotic mean-field behavior. Indeed, the small-world effect makes
the system coherent (with varying degree). We think that this observation
may be useful since many theoretical studies of population behavior have
been based on mean-field assumptions (differential equations), while actu-
ally one should rather consider individuals, and therefore spatially-extended,
microscopic simulations. The well-stirred assumption is often not sustain-
able from the experimental point of view. However, it may well be that there
is a small fraction of long-range interactions (or jumps), that might justify
the small-world effect. In particular, it would be extremely useful to derive a
general “rescaling” formulation allowing the estimation of the effective value
of parameters given a certain degree of small-world connections.

For what concerns our specific opinion model, we can draw some socio-
logical consequences from our simplified assumptions. We simulated social
groups with “frustrated” behavior, i.e., conformistic for a strong social pres-
sure and anticonformistic for “marginal” behavior like fashion or dressing.
Such a scheme can be probably applied to many societies in the transition
phase from traditional to non-traditional behavior, but also to social micro-
cosmos in western societies, in which social norms are hardly broken. It is
plausible that these frustrations may trigger oscillations, possibly chaotic.
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A social initiative promoting homogenization, or the social mixing due to
living or working conditions, could act by favoring long-range interactions
and triggering coherent oscillations. Such oscillations could be identified in
the sudden explosion of violence or pathological trends (say suicide, self-
mutilations, etc.).
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