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Human decisional processes result from the employment of selected
quantities of relevant information, generally synthesized from environmen-
tal incoming data and stored memories. Their main goal is the produc-
tion of an appropriate and adaptive response to a cognitive or behavioral
task. Different strategies of response production can be adopted, among
which haphazard trials, formation of mental schemes and heuristics. In this
paper, we propose a model of Boolean neural network that incorporates
these strategies by recurring to global optimization strategies during the
learning session. The model characterizes as well the passage from an
unstructured/chaotic attractor neural network typical of data-driven pro-
cesses to a faster one, forward-only and representative of schema-driven
processes. Moreover, a simplified version of the Iowa Gambling Task (IGT)
is introduced in order to test the model. Our results match with experimen-
tal data and point out some relevant knowledge coming from psychological
domain.
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1. Introduction

Humans usually categorize incoming information into stable concepts
which can be upgraded, related and nested one into another. The charac-
teristics of information are analyzed and classified into (i.e. they activate)
existing concepts but, whenever they would represent a novelty, they will
induce the formation of a new concept or the upgrade of the existing ones.
This adaptive modality of knowledge organization makes cognitive system
able to classify, store and employ at best incoming information, in order to
solve the eventual cognitive demand during next steps of processing. Subse-
quently, human cognitive or behavioral responses to a given set of inputs are
built following several and different decisional strategies. The role of con-
text, the kind of information and past experiences are central for the choice
of what kind of decision making will be made. In general, we can take into
consideration at least five strategies of output production:

(1) Reflexive responses: direct associations of inputs with an out-
put pattern. They require no attentional resources and are out of possible
controls. Typical examples are reflexive genetically implemented motor re-
sponses (e.g. the evade reflex) and associative behaviors (e.g. the Pavlov’s
dog salivation reflex).

(2) Automatic processes: standardized quick responses associated to
a frequent activation of simple concepts while the behavioral relevance of
the input/event is under an “alert red-line” (i.e. it requires a behavioral
response but not a direct attentional monitoring, for instance during the
vehicle driving).

(3) Routine processes: processes triggered by several related concepts
or complex events sufficiently frequent to constitute a stereotypical routine.
Routines can be solved by a script [1, 2] and need the emergence of mental
schemes [2–4], namely representations of complex concepts or events easily
connectable to a fast cognitive or behavioral response. Note that even if the
strategy requires an attentive control, it does not involve the same set of
cognitive ability needed during a problem solving task, like the resolution of
a syllogism or the Wason selection task [5].

(4) Reasoning: higher cognitive strategy of understanding and pro-
duction, mainly used during the problem solving. Given a set of premises,
humans seem to employ rules like those involved in formal logic [6], which
establish the correct formal solution. The propositional reasoning makes no
distinctions about the contents of a statement, but deals only with its syn-
tactical structure. Unfortunately, human judgements are sometimes very
far from correct formal solutions. For these reasons, a theory of mental
models [7, 8] has been proposed, which claims that hypothetical-deductive
reasoning have three stages of thought: an understanding of the premises
which leads up to model construction, a formulation of provisional conclu-



Decisional Processes with Boolean Neural Network: the Emergence of . . . 305

sions, a revision procedure that verifies if other models are possible. Errors
occur because of working memory limitedness: the bigger is the number of
models that we have to menage, the harder the problem becomes. So, errors
are conclusions not rigorously verified.

(5) Heuristic behavior: modus operandi typical of situations in which
there is either a lack of information, or different mental schemes run in con-
flict, or there is no time to reasoning, or the task is too difficult. In these
cases, individuals adopt strategies more similar to an attempt rather than to
the formal solution. Note that, in some cases, the use of heuristics is manda-
tory and constitutes a cognitive bias1. Most important heuristics in psychol-
ogy are anchoring/adjustment, availability, and representativeness [10].

While strategies (1)–(4) belong to a hierarchy of use and exploitation of
cognitive resources, heuristics take place only after strategy (3), and if there
are no conditions to apply the other ones or their application fails. Finally, it
is possible to bring back the aforementioned considerations into the simple
cognitive model reported in Fig. 1. Neglecting earlier input systems and
concept stages, our main purpose is to formalize into a neural model the
cognitive constructs of mental scheme and heuristic, showing how these can
modify the production of a response. Besides we will propose a simplified
version of the IGT [11,12] in order to test our model.

Fig. 1. The cognitive model. Flowchart symbols as defined in [14].

The paper is organized as follows. In the next section we introduce
the neural model, third section is devoted to model fitting, and in the final
sections we show the main results of our simulations and discuss about future
perspectives.

1 While the abstract version of the Wason selection task leads to a correct performance
of 3.9%, the concrete one leads to a correct performance of 91%. These results are
interpreted recurring to the availability heuristic applied on past experiences.
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2. The model

The model assumes that cognitive activities during a task resolution can
be represented as a Boolean neural network, whose nodes do not necessar-
ily correspond to single biological neurons but rather to organized sets of
neurons, named functional areas. We choose this formalization in order to
remain within the framework of neural domain.

The basic computational entities, namely the formal neurons, are de-
scribed by the following parameters:

1. σ: the internal and external state of activation ∈ {−1,+1},
2. b: the threshold ∈ [0, 1],
3. c: the connectivity degree, i.e. the number of afferent synapses of the

neuron.

The N bipolar neurons are linked by connections, named synapses, each
bearing a weight ∈ {-1, 0, +1}2. At time t, the i-th node computes incoming
signals from afferent neurons and, at time t+ 1, produces a signal, i.e. fires,
according to the following update law:

σt+1
i = Sgn

(
N∑
j=1

wij σ
t
i

ci
− bi

)
, (1)

where sgn(x) returns the sign of real number x, wij is the incoming weighted
synapse of i-th neuron from the j-th one, and ci =

∑
j |Wij |. This formal-

ization makes the adopted formal neuron similar to that of McCulloch and
Pitts [9].

Dynamics: search of an asymptotic configuration. By generat-
ing an arbitrary ~σ and ~b, and a connection structure W with entries wij
uniformly distributed in {−1, 0,+1}, we are able to define the starting con-
figuration ζt0 , composed by (W,~b, ~σ t0)3, i.e. the initial condition of the dy-
namics. Neurons are synchronously updated by applying iteratively Eq. (1)
for a sufficiently large time tmeas, the maximum convergence time allowed4.
IfW is asymmetric and according to its asymmetry degree, a periodical orbit

2 The case 0-weight corresponds to the absence of link. We do not allow auto-synapses,
or self-recurring links.

3 We have just introduced the vector notation for the matrix of synaptic weights W =

(wij)ij , the state vector ~σt = (σt1, . . . , σ
t
N ), the threshold vector ~b = (b1, . . . , bN ) and

the connectivity vector ~c = (c1, . . . , cN ).
4 In principle the longest convergence time tc should be 2N , the maximal periodical
orbit of a finite size discrete system of N unities having 2 possible values. But for
reasons of feasibility of simulations, fixing a reasonable tmax, tmeas will correspond to
min{tc, tmax}.



Decisional Processes with Boolean Neural Network: the Emergence of . . . 307

of length l is reached after a transient τ , giving the asymptotic configura-
tion ζtmeas , composed by (W,~b, ~σtmeas). In the following, all the procedures
will make use of this concept of asymptotic configuration and its eventual
distance from the correct behavior. This is motivated from the assumption
that only stable asymptotical configurations can account for stability and
invariance of response typical of human cognitive processes. In principle, tc
can be viewed as the time needed by the cognitive elaboration.

Training phase: a problem of global optimization. We choose
a subset of n Boolean functions as possible instances of the training problem.
For each γ-th function we select Nγ

I input neurons from which the remaining
ones take entries for the update dynamics and just one, that is Nγ

O = 1,
output neuron from which, after the attainment of a ζtmeas , we will measure
the computed output.

Moreover, for each γ-th function we generate the corresponding training
set εγ , for which all possible examples are given by coupling one of the
inputs ξγ,inp

µ with the respective wanted output ξγ, out
µ , for µ = 1, . . . , P γ .

The presentation of the entire training set ε is consequently just one training
epoch5. At the end of each epoch, the error signal E(ζtmeas) will be:

E =


1

4Plw

N∑
i=N−NO+1

P∑
µ=1

lw∑
j=1

(
Sout
i,µ −ξout

i,µ

)2+
τw − 1

10
, if tc ≤ tmax

10NO , otherwise ,

(2)

where Sout
i,µ and ξout

i,µ are respectively the computed and the wanted output
for the µ-th pattern of ε6. The addiction of a term for transient will justify
the passage from a computationally slow attractor neural network, proto-
typical of data-driven processes, to a faster and oriented one representative
of schema-driven processes. Each asymptotic configuration having E = 0,
is one of the possible configurations able to solve the n incoming instances
of the problem and therefore the presented task.

5 Consequently, given n functions to learn, the input vector I will have NI =

nX
γ=1

Nγ
I

elements, the output vector O will have NO =

nX
γ=1

Nγ
O = n elements, and the size

of ε will be P =

nX
γ=1

P γ , where P γ = 2N
γ
I . Notably, the input vector I cannot

change entries during dynamical update ⇒ t becomes 2N−NI . We notice that, since
we do not need to test our network on the complementary subset of εγ , we can freely
present, for each γ-th instance of the problem, the entire correspondent training set
εγ during the training phase.

6 We remark that the first term in first case of Eq. (2) is just the normalized average
Hamming distance generalized for the entire orbital length.
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As there are not clues as the way ζtmeas have to be modified, we choose to
proceed by trial and error. Consequently, the learning problem can be asso-
ciated with a problem of global optimization, where E is the object function
to be minimized. The choice of the optimization strategy will produce dif-
ferent behaviors of the network during the learning phase and consequently,
we will be able to associate them to different cognitive strategies of task
resolution.

Haphazard trials. No optimization strategy is applied. Starting from
an arbitrary generated condition, a series of local perturbations are pro-
duced, by modifying just one entry either inW or b selected at random with
uniformly distributed probability. For each perturbation, the corresponding
E(ζtmeas) is calculated. The resulting trend is a random walk of E. This
non strategic behavior is directly affected by the N involved functional ar-
eas, namely by the size of the solution space. Consequently this strategy can
need a very long time to reach the solution of the problem and to produce
the correct response to the task.

Emergence of mental schemes. The optimized asymptotical config-
uration must be able to store the n presented instances as mental schemes,
which future activation will produce a fast and cognitively cheap response.
We choose to formalize the emergence of mental schemes as a simulated
annealing procedure with geometrical cooling ratio cl, fixed once for all at
0.6, and by using E as energy. By starting from the arbitrary generated
ζtmeas , a local perturbation is produced with same modalities of the haphaz-
ard trials. The resulting ζ ′tmeas differs in E of a value ∆E from the previous
one. For the acceptation of the new configuration, we refer to the Metropolis
algorithm. The new configuration is kept with probability:

p =
{ 1 if ∆E < 0

exp(−∆E/T ) otherwise ,
(3)

where T will modulate the cooling schedule7. The perturbation procedure
continues until E(ζtmeas) = 0 for a reasonable number of epochs. At this
point the system have inferred and stored the n instances. When a future
behavioral situation will pose the same set of input, the stable reached con-
figuration will be reactivated and, having respectively τ and E equals to
zero and l equal to 1, it will produce one of the fastest and correct responses
admissible by the task.

7 The starting T0 is fixed once for all at 5. Each 10 epochs we sample the acceptance
probability ap. If ap = 0.5± 0.2 then Tk+1 = cl Tk.
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3. Results

Fig. 2 shows how the attainment of a configuration having E = 0 can
depend on the size of the feasible region, in our model function of N . During
a series of local perturbations all accepted, the greater is N the more difficult
becomes the search of a configuration able to solve the task. Anyhow, this
dependency is also found by applying the algorithms of global optimization
during the learning phase.
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Fig. 2. Error signal during perturbation phase. Each time step is just one lo-
cal perturbation. The circles marks the occasional configurations with E = 0.
(a) N = 5, (b) N = 10.

Results of the optimization procedure are presented in Fig. 3. Comparing
Fig. 3 (a) with Fig. 2(b), it is clear what happens to the slow dynamics during
optimization. Having at the beginning a large temperature T , all moves can
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Fig. 3. Mean error signal over 30 learning sessions with Metropolis algorithm. Each
time step corresponds to the acceptance of just one local perturbation. (a) Modu-
lation of T on E, fixed N = 10, n = 1; (b) fixed N = 10, n variable; (c) N variable,
fixed n = 1.



310 G. Barnabei et al.

be accepted in spite of their respective error E, allowing the passage among
basins. By decreasing T , only moves that decrease the error E begin to be
accepted, see Eq. (4), causing a more exhaustive exploration of the small-E
of the basin up to the reaching of the global minimum. The dependence of
E from n and N shown in Fig. 3 (b), (c) can be easily reported to the task
difficulty, typically correlated with the number of instances of the learning
problem and the number of involved functional areas.

Fig. 4 shows the passage from an initial unconstrained dynamics to an
optimized one, ruled by the learning of a scheme. This transition also cor-
responds to a passage from a ζt0 having one of possible τ and l (Fig. 4(a)),
to a ζtmeas having τ and l respectively equal to zero and one (Fig. 4(b)).
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Fig. 4. Dynamics transition. Neurons activation (dark/black = +1; light/white
= −1) as function of time. Each time step is just one application of (1).

4. Testing the model

In this section we introduce a simplified version of IGT8 in order to test
qualitatively the predictions of the model.

The task consists of trials where a subject must select a card, reporting
both a term of winning and a term of loss, from 4 decks (A’, B’, C’ and D’,
respectively) of 60 cards. Main goal of the subject is to maximize its budget
after a 100 trials session. The temporal series of decks are different; decks
A’ and B’ promise strong winning in the short period but stronger losses in
the long period, while C’ and D’, promising small winnings but also smaller
losses, assure a better budget at the end of the task.

For our purpose, the task to perform by our network takes in consid-
eration only the two native decks B’ (min = −2330; max = 170; mean
= −62.5) and D’ (min = −310; max = 95; mean = −31.25), whose length
is maintained to 60. While the choice of the first card is random, the fol-
lowing ones are given by the output of the optimized network, composed

8 The original IGT is a psychological task used into larger test batteries to study
qualitatively behavior of normal subjects during simulated real-life decision making.
In neuropsychological practice, it is administered to pathological gamblers.
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by 5 neurons, one of which is the input and one the output. At each trial
Tr, the network computes all the Tr − 1 previous trials as examples into a
simulated annealing optimization step, using the previous computed choices
as computed outputs Sout and the terms of winning or loss in the corre-
sponding temporal series as wanted outputs ξout. This procedure assumes
in psychological terms an infinite working memory, and explicitly makes use
of the heuristic of availability; in absence of relevant information about the
covered cards, humans tend to use available information stored from past
trials. Once optimized, the output computed by the asymptotical configu-
ration will become the choice of the new trial, and its value is registered for
future choices.

Fig. 5 shows typical behavior of the network while performing the sim-
plified IGT. The winnings early promised by B’ prematurely influences the
network response in favor of deck B’ but, after the first severe losses, the
functional E associated to B’ becomes too large and the computed output
switch in favor of D’. From this moment on, almost all the perturbations to
the asymptotical configuration ζtmeas are rejected by the simulated annealing
and the network quickly produces its choice trial by trial. It is interesting
to point out that the transition from a regime distinguished by choices in
B’ to one distinguished by choice in D’ happens approximately at the same
time of humans [12, 13], implying that the time scales in which the mental
model becomes effective are comparable between humans and our model.
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Fig. 5. Behavior of the network over 30 runs. Each time step is just one trial.
Upper starred dots (B) are most frequent choice of deck B’, lower starred dots (D)
for deck D’.

Moreover, after the first great loss given by B’, network tends to persevere
with choices in the same deck, as both normal subjects and pathological
gamblers. This strange behavior can be interpreted from a psychological
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point of view as a persistence of the use of the heuristics of anchoring and
adjustment during earlier trials after the loss, while in our network is due to
the fact that the error quotas related to B’ and D’ becomes comparable.

5. Conclusion and future perspectives

We have presented preliminary results of application of a Boolean model
of neural network to relevant cognitive strategies involved in decision making
tasks. At the moment only mental schemes have been studied. The choice
of such formalization is due to the possibilities that Boolean neural net-
works offers in terms of robustness, ease of simulation and easy generation
of samples for data fitting.

The model appears to capture the most relevant psychological knowledge
regarding the domain of application. By shifting from an unstructured slow
attractor neural network to a quicker forward-only one, it hold in respect of
learning studies about task complexity and the number of employed cognitive
resources. As defined, mental schemes become fast and adaptive cognitive
strategies of behavioral response.

Regarding the model fitting, the behavior of our network on the simpli-
fied version of the IGT produces results qualitatively comparable with those
of humans.

Future studies will be targeted to include into the model aspects regard-
ing probabilistic and hypothetical-deductive reasoning, while future appli-
cations will take in consideration pathological gambling.

Appendix A

Implementation algorithm

The model described above has been implemented with Matlab R2007a.
For the sake of space, the codes and the temporal series employed for the
model fitting are available by directly contacting the authors.
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