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CRITICAL PHENOMENA IN CELLULAR AUTOMATA:
PERTURBING THE UPDATE, THE TRANSITIONS,

THE TOPOLOGY∗
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We survey the effect of perturbing the regular structure of a cellu-
lar automaton (CA). We are interested in critical phenomena, i.e., when
a continuous variation in the local rules of a cellular automaton triggers
a qualitative change of its global behaviour. We focus on three types of
perturbations: (a) when the updating is made asynchronous, (b) when the
transition rule is made stochastic, (c) when topological defects are intro-
duced. It is shown that although these perturbations have various effects
on CA models, they are generally identified as first-order or second-order
phase transitions. We present open questions related to this topic and
discuss some implications on the use of CA to model natural phenomena.

PACS numbers: 05.70.Jk

1. Introduction

1.1. Position of the problem

The thesis of this paper is that cellular automata (CA) should not only
be studied with various initial conditions but also with various perturba-
tions to assess how they resist modifications of their structure. Why do we
need to examine the effect of perturbations on cellular automata? When
considering a cellular automaton, why should we make efforts to estimate
its robustness to various perturbations? There are different reasons for ask-
ing these questions and it is convenient to answer them depending on the
context in which we are using a cellular automaton. A useful dichotomy is to
separate the CA models that mimic natural phenomena and those designed
to study massively parallel computations.
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Firstly, if the CA model is meant to mimic a natural phenomenon, it is
important to know which of the implicit hypotheses of the model are neces-
sary to re-produce the phenomenon. By “implicit” hypotheses we mean the
mathematical regularities which define the “structure” of CA, in opposition
to the local rules, which vary from one model to another. For instance, let
us consider an epidemic modelling with a simple contamination rule: a cell
gets infected if one of its neighbours is infected. Clearly, the evolution of the
“contamination pattern” depends on the type of neighbourhood chosen. It
also strongly depends on the type of updating. How do we choose the right
updating scheme? Since there is no clock in nature that synchronises tran-
sitions, we are free to choose the updating procedure as we wish. For some
authors, this freedom casts some doubts on the relevance of using cellular
automata as a modelling tool [11,13]. On the other hand, if we observe this
system from a higher viewpoint, we may also declare the behaviour robust
since we always observe that the whole lattice is progressively contaminated.
Is this a more appropriate definition of robustness? It all depends on how we
observe the system. It is thus important to note that there is no unique way
of defining robustness. This implies that our definition of robustness will
strongly depend on the “level of granularity” we use to observe the system.
Since CA are mainly used for developing qualitative predictions, testing the
robustness to various perturbations is necessary to know which part of the
“structure” is involved in the production of a given behaviour.

Secondly, we examine the case where CA are models of massively parallel
computation. In this context, we are in the domain of mathematics and we
do not ask whether or not a hypothesis is “realistic” since we may choose our
hypotheses freely, as mathematicians do when they build new worlds. The
question here might more be seen as a challenge: how can we build mas-
sively parallel computation tools that resist various perturbations? Can we
imitate living organisms or natural societies to achieve this goal? Answering
these questions would pave the way for important innovations. For example,
it is well known that the existence of a central clock to synchronise compo-
nents brings important limitations to the design of novel devices. How can
we overcome this constraint? Can we build asynchronous or partially syn-
chronous computing devices? (see e.g., [16]). These issues illustrate some of
the scientific motivations to explore CA robustness.

Although the idea of perturbing cellular automata is not new, it is sur-
prising to see that only a few researchers have given their attention to it.
To date, defining the robustness of a system is more of an art than a science;
it mainly consists in finding the right balance between a too restrictive def-
inition, which renders the system sensitive to any perturbation, and a too
loose definition, which would result in considering the system as robust to
any perturbation.
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1.2. Critical phenomena

In this paper, we choose to tackle the robustness of CA models from
the angle of critical phenomena. By critical phenomena, we mean all the
cases where a continuous variation in the local rules of a cellular automaton
triggers a qualitative change of its global behaviour. Why is this viewpoint
interesting? Its main advantage is that it allows us to build a bridge between
CA and statistical physics as the abrupt changes of behaviour can be studied
as phase transitions. These phenomena follow well-structured scaling laws;
in particular, near the critical point, the system’s behaviour obeys power
laws. The exponents of these laws are called the critical exponents. They
are not arbitrary but are generally found in well-known classes. It has been
observed that different models with very dissimilar local rules exhibit the
same critical exponents, we say that they belong to the same universality
class. For computer scientists, this other type of universality brings out an
interesting method of classification, which, as we will see later, is largely
uncorrelated to the traditional classifications. Grouping cellular automata
according to their critical behaviour might give us new insights on how
complex global behaviours may emerge from simple local interactions.

1.3. Methodology

To present the effect of various perturbations on different CA models,
we may either proceed by grouping our analysis by types of models or by
examining the effect of each perturbation on one model or by examining
the effect of each perturbation separately. We adopt the latter choice and
we divide our survey by considering perturbations one type after the other.
This presentation is meant to emphasize that different models, which do not
share much in common, sometimes react identically to a given perturbation.
For the sake of brevity, we select a few models, mainly chosen from our own
research intrest. Whenever possible, we broaden our point of view by linking
our observations to wider questions on cellular automata.

The structure of the paper follows the three main properties found in the
structure of “regular” CA: (a) synchronous updating, (b) determinism of the
transitions, and (c) regular arrangement of cells. In Section 2, we survey the
existing works which examine how the asynchronous updating may trigger
phase transitions. We then examine in Section 3 the case where the local
transition rule is made stochastic. The effect of topology perturbations is
surveyed in Section 4. Each section is devoted to a perturbation type and
in each section, we mainly concentrate on simple models such as the Game
of Life, Elementary Cellular Automata or the Greenberg–Hastings model.
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2. Asynchronous updating

2.1. The Game of Life

The asynchronous version of Game of Life, or simply Life, provides us
with a sound introduction to the topic of robustness. Let us recall the rules
which define the “game”. A cell takes one of the two values: occupied or
empty. The new state of a cell depends on its current state and on the sum
σ of occupied sites among the 8-nearest neighbours. An empty cell becomes
occupied if and only if σ = 3; an occupied cell remains occupied if and
only if σ ∈ {2, 3}. The rule was invented by Conway in 1970, it has been
shown to have a global behaviour rich enough to embed a universal Turing
machine [2]. Now what happens to the system if the cells are no longer
updated synchronously at each time step? There are various methods for
defining asynchronous systems and we restrict our scope to the two most
intuitive ways: (a) We call α-asynchronous updating the procedure which
consists in updating a cell with probability α at each time step, otherwise
keeping its state constant. We call α the synchrony rate. (b) We call fully
asynchronous updating the procedure where n cells are updated sequentially
and randomly in one step (n is the lattice size) — the cells are chosen
uniformly and independently without any memory.

Fig. 1 displays three evolutions of Life with different updating schemes
and cyclic boundary conditions. The asynchronous updating has over-
whelmed the global behaviour in such a way that the system evolves into
a steady state which consists of “labyrinth” patterns. This strange mod-
ification was first reported by Bersini and Detours [3] for the fully asyn-
chronous case and was studied quantitatively by Blok and Bergersen for the
α-asynchronous updating [1]. Their results indicate that the systems obey

Fig. 1. Three snapshots showing evolutions of Life for a random initial configura-
tion: (left) synchronous updating t = 200, (middle) α-asynchronous updating with
α = 0.5, t = 400, (right) fully asynchronous updating t = 200. Note that the three
cases use the same number of updates on average.
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phase transition with a critical threshold located at α ∼ 0.910. The transi-
tion between the two phases belongs to the directed percolation (DP) univer-
sality class (see [19]). Above the threshold, the system’s behaviour is similar
to the synchronous case, although the periodic stable structures disappear.
Below this threshold, the “labyrinth” phase develops, its development on
the grid increases as the synchrony rate α decreases. A first study on how
labyrinth phase develops on the grid was proposed by Fatès and Morvan but
a detailed description of the properties of this phase is still needed [8].

Many questions emerge for these observations. What is the effect of
asynchronous updating on “complex” CA such as Life? Bersini and Detours
suggested that it was a “stabilisation” of the system. In our view, it is not
so clear whether the asynchronous system is more stable as this stability
strongly depends on the system’s size. For a small-sized system, i.e., for
a grid length smaller or equal to 20, it is indeed possible to observe the
system reach a fixed point. However, as soon as the grid becomes large
enough, for instance for L = 30, one no longer sees the system freeze on a
fixed point, even for very long simulation times. So the state of the labyrinth
phase is a meta-stable phase: it evolves rather erratically until by chance,
it “touches” a fixed point. In mathematical terms we say that the system is
a metastable state and it is an open problem to prove this property. More
generally, how is the existence of a phase transition related to the Turing-
universality of Life? How frequent asynchrony-induced phase transitions
are in the space of CA? In the next paragraph, we start to gain insights
on these issues by shifting our attention from a single rule to a small set of
rules, namely the Elementary Cellular Automata (ECA).

2.2. Elementary cellular automata

Ingerson and Buvel were among the first authors to raise the question
about the importance of synchronous updating in the emergence of struc-
tures in cellular automata [13]. According to their own words,

it is necessary to “estimate how much of the interesting behaviour
of cellular automata comes from synchronous modelling and how
much is intrinsic to the iteration process”.

Although their study consisted mainly in describing qualitatively the effect
of asynchronous updating, they proposed a first panorama of the effects ob-
served on the 256 ECA rules (binary 1D nearest-neighbour rules). A quan-
titative assessment of the effect of asynchrony on ECA was conducted by
Fatès and Morvan [9]. Results showed that quantifying the behaviour with
the density produced a discrimination between the robust and non-robust
rules. Four classes were proposed; depending on whether the perturbation
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of behaviour occurred for α = 1 and for α < 1. More specifically, a first set
of rules was identified as having a non-trivial critical phenomenon. Seven of
these rules were characterised as belonging to the DP universality class [4]
and another rule, ECA 178, was identified in another universality class spe-
cific to the case where the states 0 and 1 are symmetrical [5].

The main outcome of the exploration of asynchronous ECA is that is no
direct relationship between the “traditional” CA classifications as dynami-
cal systems and the classifications which concern robustness. For example,
ECA 18 and ECA 50 are respectively class-3 (chaotic) and class-2 cellular
automata according to Wolfram’s informal classification but they are both
found to display DP behaviour (see Fig. 2). This implies that two dissimi-
lar rules may exhibit a similar global behaviour when simulated near their
critical threshold. Rouquier and Morvan also observed similar behaviour
with coalescing automata, i.e., asynchronous evolutions of CA with a unique
source of randomness [20]. It is an open problem to determine which are the
“ingredients” that makes a rule belong to the DP universality class.

ECA 18, α = 1.00 ECA 18, α = 0.70

ECA 50, α = 1.00 ECA 50, α = 0.60
Fig. 2. Four space-time diagrams showing the evolution of two ECA with (left)
synchronous updating and (right) with α-asynchronous updating near the critical
point (similar evolutions). Time goes from left to right, rings are made of 50 cells
(see Ref. [5] for more details).

2.3. Other models

Concerning other two-dimensional binary CA, we point out the recent
work by Fatès and Gerin [7] and by Regnault et al. [21] where the tools from
the stochastic process theory are used to analyse the convergence properties
of some well-selected rules — see references in these two papers for a wider
scope. Apart from the two-state models mentioned so far, we must acknowl-
edge that there are not many models whose robustness have been estimated
with different types of asynchronous updating, and still less where critical
phenomena have been observed.
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An interesting exception lies in the debate set out by Huberman and
Glance, who illustrated how in the spatial version of the Prisoner’s Dilemma
a change from synchronous to fully asynchronous updating turned the sys-
tem to a different attractor where all players are defecting [11]. These results
were later re-examined independently by Mukherji et al. [18] and by Grilo
and Correia [10] who showed that the α-asynchronous updating leads to
different attractors, and that the transition from one attractor to another
could be abrupt. Recently, Saif and Gade discovered that the asynchronous
version of the spatial Prisoner’s dilemma triggers first-order phase transi-
tions [22]. This behaviour is rather unusual as the phase transitions found
in similar situations are generally second-order, i.e., continuous. It would
be interesting to explore whether other cases of discontinuous behaviour are
present in other systems.

3. Perturbations of the transition rule

We now broaden our perspective by considering that the outcome of a
local transition is no longer deterministic. This defines the probabilistic CA
or stochastic CA, a class which contains the α-asynchronous CA (but not the
fully asynchronous CA). An abundant literature is available on this topic.
For the sake of conciseness, we only mention a few stochastic CA which are
obtained as perturbations of a well-known deterministic model. For instance,
Ising or Domany–Kinzel models will be out of consideration since they are
“intrinsically” stochastic — the deterministic behaviour obtained with some
settings are more degenerate cases than common cases.

3.1. The Game of Life

The idea to test how Life resists noise dates back to as early as 1978 with
paper by Schulman and Seiden [23]. They examined how the introduction
of a stochastic element in the local evolution rule would perturb the long
term evolution of the system. They replaced the deterministic transitions
pk,s — which are equal to 0 or 1 if a cell in state k with s living neighbours
dies or lives — by pk,s(T ) which are the probabilities to be in state 1 at the
next iteration. They take pk,s(T ) = (pk,s + d.T )/(1 + T ), where d is the
current density and T is the stochastic parameter, named “temperature” by
analogy with the physical parameter. Interestingly, this parameter is chosen
such as not to influence the evolution towards increasing or decreasing the
density — this property is also valid for the α parameter. One problem
with this approach is that the calculus of the probabilities is not local: the
density should first be computed using the state of the whole grid before the
transitions are determined. Despite this difficulty, the authors performed
first-order and improved mean-field analysis. Their findings can be summed
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up as thus: mean-field analysis fails to predict the evolution of the classical
deterministic Life but succeeds with high-temperature models. More sur-
prisingly, their analysis shows that a phase transition exists which would
separate two regimes where the system is attracted to the null density and
to an attractor of density 0.37. However, no characterisation of the phase
transition was made. It is very likely that the effect of the “temperature” is
similar to that of the asynchrony.

3.2. Other stochastic CA

The existence of phase transitions were also observed by Kaneko and
Akutsu for 4-neighbour-outer-totalistic cellular automata with the 0/1 sym-
metry [15]. Noting that “noise plays an important role for the formation of
patterns in non-equilibrium systems”, their perturbation consisted in flip-
ping cells randomly. They observed the existence of first-order transitions
and classified the various types of patterns observed (labyrinth, turbulence,
glassy, ferro, anti-ferro, etc.). A quantitative study of these phenomena still
remains to be performed.

4. Adding topology perturbations

Let us now complete our panorama of the perturbations by considering
topological modifications. Here again there are so many ways of modifying
the topology that it is difficult to be exhaustive. We choose to mainly focus
on the cases where locality of the connections between cells is conserved. We
point out that generalising the CA model of computation to any topology
is a rather novel field, interested readers may refer to the work of Marr and
Hürr for recent developments [17].

4.1. The Game of Life

In all the preceding situations, phase transitions appeared when the local
rule was modified. Is it possible to obtain similar effects by changing only
the links between cells? Huang et al. answered the question positively in
a study where they perturbed the Game of Life by (arbitrarily) rewiring
links between cells [12]. They found similar effects to those of asynchrony,
i.e., that Life exhibits a phase transition from an “inactive-sparse” phase to
an “active-dense” phase. It was surprising that this phase transition belongs
to the DP universality class in spite of the use of non-local links (see the
hypotheses of the Janssen–Grassberger’s conjecture [14] on the occurrence
of DP, e.g., in the reviews by Hinrichsen [19]).

What happens if asynchronous updating and topology perturbations are
added? This combination was examined by Fatès and Morvan [8] by re-
moving links randomly and independently in the neighbourhood of the cells.
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They observed that the critical synchrony rate was lowered by the topolog-
ical perturbation and that if more than 10% of the links were destroyed, no
phase transition was observed. Figure 3 illustrates this progressive modi-
fication of the phase transition. A first explanation was proposed for this
phenomenon: as some links were missing, it became more difficult for the
labyrinth (or active-dense) phase to spread. However, things are not as
trivial as they appear. We may note that in the Life CA, a condition
for the survival of a cell is to avoid overcrowding, i.e., to have less than
four occupied neighbours. The removal of links should thus not only favour
death of cells but also their survival. The question remains today as to
how asynchrony-induced phase transitions are affected by topology pertur-
bations. In particular, what would happen if links were added or simply
rewired? Would the effects be similar?
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Fig. 3. Modification of the phase transition in Life. MLR (missing link rate) is
the probability that a cell does not “see” one of its neighbour (the modification is
definitive). Grid size is L = 100; the steady-state is approximated with a transient
time of 5000 steps and an average computed on the next 1000 steps (see [8]).

4.2. The Greenberg–Hastings model

Finally, how do the topological perturbations combine with the stochas-
tic perturbations of a CA rule? The subject is once again very wide and
could be tackled in various ways. To close our tour of critical phenomena,
we report on a recent study of the stochastic Greenberg–Hastings model [6].
The local rule is as follows: a cell can be either neutral, excited or refrac-
tory. A neutral cell stays neutral unless it has at least one excited neighbour,
it then becomes excited with a given probability (the excitability). An ex-
cited cell becomes refractory in one step, and then it stays refractory during
M steps until it becomes again neutral.
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For the regular grid, varying the excitability triggers a second-order phase
transition from an “active” phase, where the waves survive an arbitrary long
time, and an “extinct” phase where the waves disappear. With no surprise,
the phase transition was found in the DP universality class for various neigh-
bourhoods tested. More interesting was the analysis of the position of the
critical threshold. The simulation results showed that as links were removed,
the critical excitability was progressively increased and became more diffi-
cult to measure (“blurring effect”). However, contrary to Life, the limit
here was attained for about 40% of topological defects. These unexpected
phenomena were interpreted as a result of the combination of the effects
of classical percolation and directed percolation. Although the prediction
of the position of the critical threshold is a difficult problem in general, we
could verify that this position varied as the inverse of the neighbourhood
size. It is an open question to determine whether this law applies for other
systems.

5. Discussion

We presented a brief (and partial) survey on critical phenomena in cel-
lular automata. We aimed to illustrate how cellular automata, despite their
simplicity of definition, may exhibit unexpected changes of behaviours when
their structure is only slightly perturbed. We focused on three perturba-
tions: from synchronous to asynchronous updating, from deterministic to
stochastic transitions, from regular to irregular grids.

Each of these perturbations could trigger first-order or second-order tran-
sitions, and when combined, the perturbations could lead to strong modifi-
cations of the phase transitions. In our view, keeping in mind these obser-
vations is primordial for a better use of cellular automata in the modelling
field. As the science of complex systems is in an early stage, we should
be careful when using CA models to mimic real world phenomena. It has
been a long-lasting debate to know whether CA are a too “simplistic” mod-
elling tool and we believe that a careful assessment of the robustness of CA
may plead in favour of their use in a modelling context. Our review aimed
at showing that the use of CA as modelling tools often has limits. When
submitted to structural perturbations, their behaviour may be robust, or it
might be immediately overwhelmed, or it might resist only up to a certain
extent of perturbations. As we see it, gaining insights on critical phenomena
in CA now requires a wide “cartography” project to explore a large panel of
models from the robustness viewpoint.
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