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In this article, we study transportation network in Minnesota. We
show that the system is characterized by Taylor’s power law for fluctuation
scaling with nontrivial values of the scaling exponent. We also show that
the characteristic exponent does not unequivocally characterize a given
road network, as it may differ within the same network if one takes into
account location of observation points, season, period of day, or traffic
intensity. The results are set against Taylor’s fluctuation scaling in the
Nagel–Schreckenberg cellular automaton model for traffic. It is shown that
Taylor’s law may serve, beside the fundamental diagram, as an indicator of
different traffic phases (free flow, traffic jam etc.).

PACS numbers: 89.75.–k, 89.75.Da, 05.40.–a

1. Introduction

In ecology, a striking observation is that variability in population abun-
dance of a species and average population density are related in both space
and time. The relationship is known as the Taylor’s power law (or the law
of the mean) and states that the mean 〈N〉 and the variance 〈N2〉 − 〈N〉2
characterizing the number of population representatives are related by the
power law

〈N2〉 − 〈N〉2 = a〈N〉b , (1)

with the characteristic exponent b describing effects of heterogeneity in spa-
tial or temporal patterns of the frequency distribution.

Since the publication of Taylor’s famous paper in 1961 [1], the law of the
mean has been substantiated in a vast body of ecological data that spans
from protozoans to human populations [2]. This kind of fluctuation scaling
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has been also noticed in a variety of natural phenomena including precipita-
tion in a given area and river flows [3]. Taylor’s law has also been observed
in dynamics of different man-made systems driven by human activity [4].
Here, the list of documented examples includes behavior of the Internet and
stock market dynamics.

In this paper we perform a detailed analysis of fluctuation scaling in car
traffic. We show that fluctuations in the number of cars passing through a
given observation point fulfill the relationship given by Eq. (1). The clue
observation reported in this paper is that the scaling exponent b does not
unequivocally characterize a given road network. The parameter bmay differ
not only among various transportation networks but also within the same
network if one takes into account: location of observation points (intersec-
tion, one-way street, highway, etc.), season, period of day, or simply traffic
intensity. For this reason Taylor’s law may serve, beside the fundamental
diagram, as an indicator of different traffic phases (free flow, traffic jam etc.).

The outline of the paper is as follows: At the beginning (Sec. 2) we ana-
lyze Taylor’s fluctuation scaling in real data. In Sec. 3 we show that Taylor’s
law is also observed in the simplest cellular automaton model for traffic (the
Nagel–Schreckenberg model), although interpretation of the obtained results
deserves further studies. Sec. 4 gives concluding remarks.

2. Fluctuation scaling in real traffic

Hourly numbers of cars passing through observation points located on
interstates, trunk highways, county state-aid highways, and municipal state-
aid streets at various locations throughout Minnesota were retrieved from
the Minnesota Department of Transportation [5]. The traffic intensity had
been recorded by 72 automatic traffic recorders (ATRs) from 2002 to 2007.
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ATR #25: 2pm-3pm; February 2007, direction East
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ATR #222: 1am-2am; March 2004, direction North

Fig. 1. Two examples of time series considered in our analysis. The series represent
number of cars counted by a single ATR during 20 working days in one month in
the period 2002–2007. (A) ATR no. 222, 1am–2am, March 2004, direction: North.
(B) ATR no. 25, 2pm–3pm, February 2007, direction: East.
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The datasets, from which mean and variance were calculated, include the
number of cars observed by a single recorder and passing in only one direc-
tion at a given hour in all weekdays of a month (consult Fig. 1 for better
understanding).

In Fig. 2, one can see that although the whole data obey Taylor’s fluctu-
ation scaling with the characteristic exponent b = 1.43, in reality, the data
are very heterogeneous and the parameter b characterizing traffic recorded
by a single ATR may change dramatically from hour to hour. For example,
the car flow (i.e. the number of cars counted within a given time window)
as measured by ATR no. 222 possesses three distinct phases correspond-
ing to non-overlapping periods of time by day, i.e. night hours: 1am–7am,
working hours: 8am–6pm, evening: 7pm–12am. The phases have different
values of the characteristic parameter b. It is meaningful that during night
hours the value of b = 1.12 is very close to unity1, which suggest motion
of independent (uncorrelated) cars. During working hours traffic is char-
acterized by the largest value of b = 3.57. In this period, due to mutual
interactions (correlations) between cars, fluctuations in traffic flow are sig-
nificant and congestion (traffic jam) can be observed. Our results clearly
show that in the evening, nature of traffic recorded by the considered ATR
changes again. The value of b = 2.36 attributing the new phase is lower than
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Fig. 2. Taylor’s fluctuation scaling in transportation network of Minnesota.
(A) Traffic intensity as measured by all automatic traffic recorders in Minnesota in
2007. (B) Daily fluctuations in traffic measured by a single recorder (ATR no. 222)
in 2002–2007. In the figure, full points correspond to raw data (i.e. mean and
variance calculated according to description given in the text), the open symbols
express logarithmic binning of the data, and the solid lines represent their linear
fits (in log-log scale).

1 The scaling parameter b=1 corresponds to Poissonian fluctuations 〈N2〉−〈N〉2 =〈N〉,
cf. Eq. (1).
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the corresponding value characterizing the earlier period. It implies that in
the evening traffic becomes more homogeneous in comparison with working
hours.

Our results show that the characteristic exponent b in Taylor’s power law
for fluctuation may be used to characterize different phases of traffic flow.
Larger values of the parameter characterize stronger collective phenomena
manifesting themselves in congestion effects2. We also show that Taylor’s
law characterizing various complex systems may comprise of several laws
with different characteristic exponents. Doing such a decomposition one
can better understand the considered systems.

3. Fluctuation scaling in the Nagel–Schreckenberg model

3.1. Description of the model

During the last 20 years, a number of cellular automaton models have
been proposed in order to better understand complex traffic phenomena
and reproduce the empirical data, such as the spontaneous formation of
jams [7, 8]. A particularly simple, pioneering model for single-lane traffic
has been proposed by Nagel and Schreckenberg in 1992 [9]. Further in the
paper we show that the model, called the NaSch model, is characterized
by Taylor’s fluctuation scaling with non-trivial values of the characteristic
exponent b.

In the NaSch model a lane is represented by a one-dimensional array of
L sites. Each site may either be occupied by one of N cars, or it may be
empty (N ≤ L). Each vehicle i = 1, 2, . . . , N has an integer velocity vi with
values between 0 and vmax. State of the system at time t + 1 is obtained
from its state at time t by applying the following rules to all cars at the
same time:

(i) Acceleration: unless velocity vi of a car is lower than vmax it is ad-
vanced by one

vi → min[vi + 1, vmax] . (2)

(ii) Slowing down (due to other cars): if the distance di to the next car
ahead is not larger than vi the speed is reduced to avoid accidents

vi → min[vi, di] . (3)

2 It is worth to mention that a similar meaning of the parameter b has been also found
in other complex systems. In ecology, larger values of b give evidence for stronger
aggregation of individuals in different populations [1]. In genetics, they characterize
stronger clustering of genes in chromosomes [6].
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(iii) Randomization: with probability p the velocity of a car (if greater than
zero) is decreased by one

vi → vi − 1 with probability p . (4)

(iv) Car motion (update of positions): each car is advanced vi sites.

3.2. Simulation procedure

Numerical simulations of the model have been performed on one-dimen-
sional lattice of size L = 105 with periodic boundary conditions. Each
simulation has started at random initial conditions, i.e. random localization
of N cars on a lane (further in the text we rather use the parameter ρ = N/L
than N) and random initial velocities. Then, we have updated state of the
system in accordance with the rules described above. Collection of data has
started after the first L time steps.

3.3. Taylor’s law in the model

In our analysis we have concentrated on time series whose data points
represent the number of cars passing through arbitrary lattice site in a given
time period τ (cf. Fig. 1). Having such a time series one can calculate its
mean and variance (both depending on τ). Doing so for different window
sizes τ = 10, 20, 50, 100 . . . and plotting the obtained mean-variance points in
a log–log graph we have obtained Taylor’s power laws characterizing various
stages of the traffic flow described by the set of model parameters vmax, p
and ρ. In Fig. 3 we have shown three scaling laws describing car motion in
the NaSch model with vmax = 10, p = 0.1 and different values of the car
density ρ.
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Fig. 3. Fluctuation scaling in time series representing car motion in the NaSch
model described by the parameters vmax = 10, p = 0.1 and different values of the
car density ρ.
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In Fig. 4(A) and (B) one can see how the scaling parameter b character-
izing fluctuations in the considered model depends on the car density ρ for
two given values of the speed limit vmax = 5 and 10 and the fixed probabil-
ity of slowing down p = 0.1. Our simulations show that in the vicinity of
the transition from the laminar traffic flow to the congested phase, it means
in the vicinity of the maximum in the fundamental diagram (see Fig. 4(C)
and (D)), values of the parameter b are significantly larger than outside the
region. It means that the transition is turbulent. It is accompanied by large
fluctuations, just like in continuous phase transitions. The sudden reduction
of the scaling exponent b exactly at the critical density (dashed lines in the
considered figure) can be due to finite size effects, which cause that in the
vicinity of the transition point traffic becomes locally regular. In the limit
of large densities ρ ≤ 1 the scaling exponent is close to unity, which corre-
sponds to Poissonian fluctuations of holes in the strongly jammed system.
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Fig. 4. Scaling exponent b as a function of the car density ρ in the NaSch model
characterized by: (A) vmax = 5 and p = 0.1, (B) vmax = 10 and p = 0.1. Funda-
mental diagrams describing efficiency of the car flow in the two considered cases:
(C) vmax = 5 and p = 0.1, (D) vmax = 10 and p = 0.1.



Taylor’s Power Law for Fluctuation Scaling in Traffic 333

The results are consistent with our previous observations obtained for
real traffic, according to which below the transition point the growing density
of cars causes higher values of b. These, in turn, show evidence of strongly
inhomogeneous, turbulent traffic.

4. Concluding remarks

A short summary of the paper has been given in Introduction, therefore
we avoid it here. Nevertheless, we would like to draw the readers attention
to issues related to the origin of the Taylor’s law for fluctuation scaling. At
present, universality of the law is widely recognized. The list of scientific
disciplines in which Taylor’s fluctuation scaling has been observed encom-
passes: genetics, epidemiology, medicine, physics, economy, computer and
social sciences. It allows one to think, that there must exist a common
mechanism underlying this law. In our recent paper [10] we show that the
conjecture is justified. In the paper, for the first time we give a universal,
microscopic explanation of the law. Supported by real world observations
ranging from insect and bird populations, through the human chromosome
to traffic intensity in transportation network, we show that the law results
from the density of state function characterizing the considered systems (the
concept borrowed from statistical physics).

This work was financially supported by internal funds of the Faculty of
Physics at Warsaw University of Technology.
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