
Vol. 3 (2010) Acta Physica Polonica B Proceedings Supplement No 2

GCA-w: GLOBAL CELLULAR AUTOMATA
WITH WRITE-ACCESS∗

Rolf Hoffmann

Technische Universität Darmstadt, FG Rechnerarchitektur
Hochschulstr. 10, 64289 Darmstadt, Germany
hoffmann@ra.informatik.tu-darmstadt.de

(Received January 12, 2010)

The novel GCA-w model (Global Cellular Automata with Write ac-
cess) is presented which is based on the GCA (Global Cellular Automata)
model. The GCA model is a massively parallel model like the cellular au-
tomata model. In the CA model, the cells have static links to their local
neighbors whereas in the GCA model, the links are dynamic according to
a special local rule. In both models, the access is “read-only”. Thereby no
write conflict can occur and all cells can update their states independently
in parallel. The GCA model is useful for many parallel problems that can
be described by a non-local and changing neighborhood. A shortcoming
of the GCA model is the missing write access to neighboring cells. Al-
though a write access can be emulated in O(log n) time this slowdown may
not be acceptable in some practical applications. Therefore, the GCA-w
model was developed. The GCA-w model allows to change the states of
the neighboring cells as well as the state of the own cell. Thereby certain
parallel algorithms can be described more appropriately and the number of
active cells can be controlled by the cells themselves in a decentralized way.
Activity control also enables dynamic resource sharing and the reduction
of power consumption. The usefulness of the GCA-w model is demon-
strated by some fine-grain parallel applications: one-to-all communication,
synchronization and moving particles.

PACS numbers: 87.17.Aa, 92.60.hk, 87.18.Hf

1. Introduction

We propose a novel massively parallel computing model [1,19], called
“GCA-w” (GCA with write-access) that is an extension of the GCA (Global
Cellular Automata) model [11,12,14–16] which is in turn an extension of
the cellular automata (CA) model. The cells of a GCA can dynamically

∗ Presented at the Summer Solstice 2009 International Conference on Discrete Models
of Complex Systems, Gdańsk, Poland, June 22–24, 2009.

(347)

348 R. Hoffmann

establish links to their global neighbors, whereas the cells of a CA use fixed
links to their local neighbors. The GCA and CA models have in common
that they allow only read access to their neighbors and therefore no write
conflicts can occur. Thereby the complexity of these models is kept low and
implementations in software or parallel hardware can easily be accomplished.

It was already shown that the GCA model is suited for a large number of
parallel problems (Jacobi iteration to solve a system of linear equations [3,9],
finding the connected components of a graph [4,10], random distribution of
particles with non local dynamic neighbors [5], N -body force calculation [2],
sorting numbers [8], and graph algorithms [12]). Also efficient parallel hard-
ware architectures [2,3,5,8,13] have been designed. The language GCA-L [9]
was developed to simulate GCA algorithms and to use the language as an
input for an automatic design process generating an application specific data
parallel hardware to be configured on an FPGA.

The GCA model can also be mapped onto the PRAM-CROW model [6].
Therefore, PRAM-CROW algorithms can be executed on the GCA model
with the same time complexity using the same amount of processors respec-
tively cells.

The GCA model has two significant restrictions:

1. No write access to the neighbors: Although a write access can be sim-
ulated in O(log n) time [6], this slowdown might be too high for prac-
tical applications. In addition, a certain class of algorithms can be
described more conveniently if the neighbor’s state can be modified.

2. No dynamic activation: In the GCA model cells can deactivate them-
selves. Thereby the number of active cells can be reduced generation
by generation. An inactive cell cannot change its state but its state
can be read by another cell. Enlarging the number of active cells dy-
namically is only achievable by an additional mechanism like a central
control. In order to control the number of active cells in a decentralized
way, write access to the neighbors is mandatory. The reason is that
an inactive cell cannot activate itself; it has to be activated by another
active cell. A dynamic varying activity is very often an inherent prop-
erty of parallel algorithms which should be exploited in order to use
the computational resources of inactive cells for other computations or
to reduce the power consumption.

Related work. The PSA (Parallel Substitution Algorithm) model [7] of
computation is a very general and powerful model based on substitution
rules. It allows also modifying the states of arbitrary target cells (right
side of the substitution) using a “base” and a “context”. In relation to the
GCA-w the base corresponds to the cell under consideration, the context
corresponds to the read neighbors and the right side corresponds to the cells

GCA-w: Global Cellular Automata with Write-Access 349

which are modified. There is also a relation to the CRCW-PRAM [17,18]
model. The PRAM model is based on a physical view onto p processors
that have global memory access to physical data words whereas the GCA-
w is based on logical computing cells tailored to the application. Another
difference of the GCA-w model compared to PRAM is the direct support of
dynamic links and the rule based approach similar to the CA model.

2. The GCA-w model

The GCA-w model overcomes the restrictions of the GCA model by
allowing write access to the neighbors. A cell can operate in two modes:

1. Normal GCA mode: A cell reads information from the dynamically
linked neighbors and then updates its own state (data and link infor-
mation) only.

2. Write-mode: A cell reads information from the dynamically linked
neighbors and then updates its neighbors’ states and optionally its
own state (Fig. 1).

Fig. 1. Each cell is dynamically connected to global (or locally restricted) neighbors
(grey). The state of the center cell including the links and the states of its neighbors
can be changed (grey to black) by a local rule.

The write-mode can be used to activate or to inactivate a neighbor, e.g.,
by sending a certain control code to the neighbor. An inactive cell serves as
a storage-only cell that can be accessed (read and write) by another active
cell. With the availability of the write-mode, many parallel algorithms can
be described with a lower time-complexity and furthermore the computing
resources of inactive cells could be utilized for other computations.

Now an inherent problem has appeared that is complicating an imple-
mentation: write conflicts may occur. They can either be avoided by using
the write-mode in an “exclusive” way meaning that the algorithm ensures
that no write conflict can occur. Otherwise, the conflicts have to be resolved
in a defined way. Well-known conflict resolution strategies among others are
Priority, Arbitrary, Common, or Reduction.

350 R. Hoffmann

GCA-w with unstructured state. A GCA-w consists of an array of
processing cells (Fig. 2). Each cell k contains a state q, an address function
h, and a rule function f. The cells’ states are updated as follows:

1. The effective address peff of the global neighbor (in the general case
multiple neighbors are permitted) is computed.

2. The dynamic link to the neighbor is established in order to read
state q*.

3. The local rule f is applied yielding the results f1 and f2.
4. The result f1 is optionally written to update the cell’s state q, and the

result f2 is optionally written to update the state q* of the neighbor
cell.

Optionally, the functions h and f may take into account central control
information, like the generation counter t, common parameters, control codes
or address offsets. Note that the model does not require central control
information because the computation of such information can be replicated
in each cell. The reason for using a central control is to minimize the cell’s
complexity.

f

h

peff

f1 f2

cell k neighbor cell k*

q q*

dynamic
link

…

central
control

Fig. 2. The global neighbor is accessed using the effective address peff computed
by the cell. The next states f1 and f2 are computed and are stored in q and q*.

GCA-w with structured state. Each cell (Fig. 3) contains a data field d
and one or more link information fields p. The link information field p is
also denoted as pointer field because it can directly act as a pointer if h is
the identity function. The GCA-w model is called one-handed if only one
neighbor can be addressed, two-handed if two neighbors can be addressed
and so on. The one-handed model seems to be sufficient for most practical
applications, as it is the case for most of the GCA algorithms investigated
so far. In addition, the multi-handed model can be simulated on the one-
handed model. Therefore, the following considerations are restricted to the
one-handed model.

GCA-w: Global Cellular Automata with Write-Access 351

e1, e2, g1, g2

h

peff

e2

cell k neighbor cell k*

d p d* p*

e1 g1

g2

Fig. 3. The state q of a cell can be partitioned into a data field d and one or more
link information fields p.

The local information (d, p) and the global information (d*, p*) are in-
puts of the functions e and g which compute the next data and the next link
respectively (Fig. 3). All cells are updated in parallel in a synchronous way
generation by generation. The functions e and g may further depend on the
local space index k of the cell and central control information. An optional
function h is used to compute the effective address peff of the global cell in
the current generation.

A structured GCA-w can be transformed into an unstructured GCA-w by
unifying the two fields d and p into one single word q, such that q is partly
or alternatively interpreted as data or pointer information. The unstruc-
tured model has the advantage that it is simpler and can be implemented
with fewer hardware resources. The unstructured model can also be seen
as “untyped” because the types “data” and “pointer” are not distinguished
whereas the structured model can be seen as “typed”.

The operation principle of a GCA-w can be defined in two forms: basic
GCA-w model, or general GCA-w model that includes the basic model.

Basic model. The basic GCA-w model does not use the address calculation
function peff (peff is the identity function h = p), meaning that the effective
address is peff = p. The next pointer and the next data fields are computed
by the following rules:

d <= e1(d, p, d∗, p∗, k, control) ,

p <= g1(d, p, d∗, p∗, k, control) ,

d∗ <= e2(d, p, d∗, p∗, k, control) ,

p∗ <= g2(d, p, d∗, p∗, k, control) .

352 R. Hoffmann

The assignment symbol “<=” is used to indicate the synchronous updat-
ing. If the arrays D = d0d1...dn−1 and P = p0p1...pn−1 are used to denote
the data fields respectively the pointer fields of the cells then d, d∗, p, p∗ are
equivalent to

d = D[k] , p = P [k] , d∗ = D[p] , p∗ = P [p] .

Note that the uniform functions used in the cells (not dependent on the
local space index k) can be specialized resulting in non-uniform functions:
f(k, . . .)→ fk(. . .).

The basic model has the advantage that it is simple because it does not
require the function h, thereby also reducing the implementation effort. The
user of this model has to be aware that the effective address in the current
generation has to be computed in the previous generation. The following
general GCA-w model is a more convenient choice from the programmer’s
point of view when an algorithm can be described more naturally by com-
puting the effective address in the current generation.

General model. The general GCA-w model uses the additional rule h in
order to compute the effective address:

peff = h(d, p, k, control) , d∗ = D[peff] , p∗ = P [peff] .

The assignment symbol “=” indicates that a value is assigned to the tem-
porary pointer variable peff that may be a wire or a temporary register in a
hardware implementation.

A hardware implementation of the GCA-w model can be simplified in
all cases where the pointer p follows an address pattern which is known in
advance and which is not data dependent: peff = h(k, control). Such a case
with “known pointers” appears in many applications (e.g., hypercube algo-
rithms). Then the link fields in the cells are not necessary. In a sequential
implementation of the model a central address generator can easily generate
these addresses.

Write conflicts. As mentioned before write conflicts may occur. We will
restrict the discussion to the one-handed model with n cells. A conflict
occurs if there is more than one write request on a cell, for different reasons:

• A cell may use itself as a neighbor if the effective address is equal to
the cell’s index. If this case is not forbidden or given another semantic
then the two values f1 and f2 (both produced by the cell itself) to be
written cause a conflict.

GCA-w: Global Cellular Automata with Write-Access 353

• The probably most frequent conflict might occur when more than one
cell k1, k2, . . .) tries to update a common neighboring cell k∗ which
does not update itself. In this case, at most n− 1 write requests may
occur on a cell.

• The maximum number n+1 of write requests occurs when a cell k tries
to update itself with f1 and f2 as described above and in addition all
n− 1 other cells try to update this cell, too.

If the absence of write conflicts cannot be guaranteed, which is especially
the case if the neighborhood is data dependent or random, the model and a
concordant implementation have to offer a defined conflict handling strategy.
It is obvious that the conflict handling increases the complexity of the model,
slows down the computation and will complicate a hardware or software
implementation.

The conflict handler works in principle as follows: The own write request
(from the target cell) and the other write requests (from the source cells)
are send to the arbiter of the conflict handler (Fig. 4). The arbiter detects
and resolves the conflicts, and then sends back acknowledge signals to those
requesters which shall be used for reduction. The selected subset of write
information is then transferred to the reducer which reduces the subset to a
scalar that will fit into the target cell.

In case of conflicts an extra computation phase (selection phase) is neces-
sary. In this phase the acknowledge values and the write information subset
are computed. The implementation of the conflict handlers in hardware or
software requires temporary variables, e.g., to store the requests and the
acknowledge information.

ARBITER REDUCER

CONFLICT HANDLER

target cell

..
.source

cells

req ack

write inform.

subset

Fig. 4. The state q of a cell can be partitioned into a data field d and one or more
link information fields p.

Activation of cells. Cells are able to control their activity in a decentral-
ized way. By this property, the overall computational effort and the power
consumption can be reduced, and the computing facilities of sleeping cells

354 R. Hoffmann

may be utilized for other computations in the system. The activity can be
controlled in a GCA-w algorithm (algorithmic description of an application
according to the GCA-w model) in one of the following ways

• The set of states that can be stored in a cell is separated into an
active set and a passive set. When assigning an active value (a value
from the active set) then the cell is activated at the same time. When
assigning a passive value (a value from the passive set) then the cell is
deactivated at the same time

• The cell’s state is extended by an additional activity bit that can be
set/reset in order to activate/deactivate a cell.

In a hardware or software implementation the active cells could be stored
in activity lists defining the set of active cells to be updated. The principle
of a sequential operating hardware architecture without conflict handler was
presented in [1,19].

Compared to a CA hardware implementation, the GCA requires hard-
ware support to access a neighbor randomly out of the range of all possible
neighbors that are used in an application; this means that for each cell a
network has to be supplied which can read a global neighbor. In special
cases, when the accessed neighbors are known in advance or the accesses are
restricted to special patterns (like the hypercube neighborhood), the access
network can significantly be reduced. The GCA-w is even more complex
in terms of hardware. It needs in addition a network for each cell that al-
lows also modifying a global neighbor, out of the range of neighbors that
are modified by the specific application. In case that conflicts cannot be
avoided, conflict handlers (with connections to all possible sources) have to
implemented in each cell at worst. There are three ways to reduce the hard-
ware effort: (1) use a locally restricted neighborhood, at least for the cells to
be modified in order to reduce the write network and the conflict handling
hardware, (2) restrict the networks to the accesses that really occur in an
application (use application specific networks), and (3) use applications that
ensure the “exclusive-write” property in order not to need conflict handlers.
In addition, hardware architectures (e.g. multiple pipelines) can be used
that do not work totally in parallel (extreme case: optimized sequential em-
ulation of the model) in order to yield a better hardware utilization.

Modifications or future extensions of the GCA-w model. The model
can be modified or supplemented by further features in order to meet practi-
cal, dedicated or more general requirements. Such modifications or features
are

GCA-w: Global Cellular Automata with Write-Access 355

• The cell array may contain storage-only cells that cannot compute
and thus cannot be activated. They are distinguished into “constant”
cells (with read-only access) and “variable” cells (with read and write
access).

• Another updating scheme is used such as asynchronous updating.

• The output of one generation is written into a new cell field in a
dataflow manner.

• Several GCA-w cell arrays (interacting or not interacting) are com-
puted in parallel.

• Non-uniform (space-dependent) cells are used.

• The neighborhood is locally restricted and/or partially static (non-
dynamic). If the neighborhood is static and local then the GCA-w
model may be called “CA-w”.

• The cell’s state is separated into a public and private (hidden) part.
Only the public part can be accessed by another cell.

• Cells are considered as objects offering methods which can be invoked
by the cell itself or by another cell.

• Cells are dynamically created or deleted.

3. Applications

It was already shown that the GCA model is applicable to many parallel
applications and that it can efficiently be supported by hardware [11,13].
Recently it was shown that the classical PRAM models can be simulated
on the GCA [6]. The write access available in the PRAM models can be
simulated with a slowdown of O(log n) using a tree of cells. If a GCA-
w algorithm guarantees the exclusive-write property this slowdown can be
eliminated through the direct write-access capability. In the following, the
usefulness and expressiveness of the GCA-w model is demonstrated by se-
lected applications (one-to-all communication, synchronization, moving of
particles). Other applications (pointer inversion, sorting with pointers, Pas-
cal’s triangle) were presented in [1,19].

3.1. One-to-all communication

The information stored in cell 0 shall be replicated in each other cell.
This can be accomplished using a tree with cell 0 as the root. In the case
of the normal GCA model, all n− 1 receiver cells have to be active over all

356 R. Hoffmann

log n generations, copying the information from their parent cells. Using
the GCA-w model, the receiver cells are activated by the parent cells when
the information shall be transferred (Fig. 5). An active parent cell activates
a sleeping child (receiver cell) and at the same time writes the information
to it. Therefore a child can sleep until it receives a message. The GCA-w
algorithm for the one-to-all communication is the following:

active

inactive

k = 0 1 2 3 4 5 6 7

t = 0

t = 1

t = 2

t = 2

Fig. 5. The state q of a cell can be partitioned into a data field d and one or more
link information fields p.

type cell = (data: integer, active: activity)
C: array [0 .. n-1] of cell

// for all cells C[k] in the array
parallel C[k = 0 .. n-1]

if (k=0) then active <= TRUE
else active <= FALSE endif

endparallel

for t = 0 to ceiling(log2 n) - 1 do
// only do for active cells
parallel C[k where active]

// compute eff. address peff, neighbor is a temp. var.
R0. neighbor = k + 2t

// activate neighbor cell
R1. neighbor.active <= TRUE

// cell(k) writes its data to neighbor cell
R2. neighbor.data <= data

endparallel
endfor

GCA-w: Global Cellular Automata with Write-Access 357

Note that the cell rule is given by (R0, R1, R2). R0 defines the effective
address of the neighbor, and (R1, R2) define the updates of this neighbor.
Compared to a CA cell rule, the neighbor is dynamically selected, and the
neighbor is modified, in this case without conflict.

3.2. Synchronization

All cells shall change simultaneously from the ZERO state into the FIRE
state. The problem is related to the well-known Firing–Squad problem. The
number n of cells is not known in advance. The “general” is located on the
left end (at k = 0, Fig. 6) and starts the process being the only active cell.
Using the global neighborhood from the beginning the problem could be
solved trivially if all the soldiers (the other cells) would directly observe the
general. But it is assumed that at the beginning only local neighborhoods
are allowed. Initially each cell is connected to its right neighbor except the
right end soldier who is pointing to himself thereby marking the end of the
chain (Fig. 6(A)). The purpose of this version with N + 1 generations is
to show how N = n + 1 cells can be activated in principle one after the
other forming a wave of activity. Note that a more efficient algorithm with
2+ log2N generations can be designed using the well-known pointer-jumping
technique (Fig. 6(B)).

k = 0 1 2 3 n k = 0 1 2 3 n

(A) (B)

Fig. 6. (A) The activity is gradually propagated (grey) until after n+1 generations
all cells change into the FIRE state (black). (B) The last soldier can be detected
faster using pointer jumping.

358 R. Hoffmann

type cell = (data: (ZERO, FIRE); p: 0 .. n; active: activity)
C: array [0 .. n] of cell

parallel C[k = 0 .. n-1] // initialize
data <= ZER0
if (k=0) then active <= TRUE else active <= FALSE endif
if (k=n) then p <= n else p <= k+1 endif

endparallel

repeat n+1 times
parallel C[k where active]

// activate right neighbor, write mode
if (p = k+1) then p.active <= TRUE endif
// if not right border reached increment
// pointer for active cells only
if (p.p != p) then p <= p+1 endif
// wait one step until right border cell was activated
if (p.p = p) and (p.active = TRUE) then data <= FIRE endif

endparallel
endrepeat

3.3. Modeling moving agents

Modeling as CA. In order to describe the movement of an agent from a
source cell to a target cell, a pair of two CA rules (the source and the target
rule) has to be applied simultaneously (Fig. 7, top). It is assumed that the
agent has a direction (computed in the previous generation or computed in
the current generation before usage) that can be observed by the target. If
the agent is allowed to move then (a) the source rule is: delete (consume)
agent, and (2) the target rule is: copy (generate) agent. Thus the move-
ment is a joint application of these two rules. Both cells have to be active.
Before an agent can move, moving conflicts have to be detected. If the
agent wants to move one cell ahead, it has to check (1) if there is no agent
or obstacle directly in front (situated on the front cell) and (2) no other
agent (to the left, right or two cells ahead) wants to move to the same front
cell. The conflict handling can be performed in each agent, or the front cell
may undertake this task [22,23]. In the case that an agent wants to jump
(more than one step ahead) the CA rules become much more complicated:
(a) each agent has to check all the other agents which might move to the
same target and at the same time (b) each possible target has to check the
environment for agents that want to move to it. Thus conflict resolution
has to be implemented in the entire source and target cells for each possible
conflict situation in a consistent way such that one determined movement
can take place. If the conflict resolution is random, then (1) the decision
has to be computed by the target, and (2) read from the target and obeyed

GCA-w: Global Cellular Automata with Write-Access 359

by the source. Normally this solution requires an extra phase or generation
in order to resolve the conflict before the movement can take place. We can
summarize, that the modeling of moving agents in CA is possible but be-
comes very difficult because complex conflict handling procedures have to be
implemented in the source and the target cells. Therefore, if a moving rule
shall be modified, the source rule, the target rule, and the conflict handling
in the source and in the target have to be modified. Modeling agents in the
GCA model is similar as in the CA model, but the GCA model offers more
flexibility because the neighbors can be selected dynamically.

Modeling as GCA-w. There are different ways to model moving agents
as a GCA-w. Compared to the CA modeling the movement of an agent can
be executed by one cell only. There are two solutions: (A) push principle
and (B) pull principle.

(A) The agent situated on the source cell copies itself to the target cell and
deletes itself (Fig. 7, middle).

(B) The target cell copies the agent from the source cell and deletes the
agent (Fig. 7, bottom).

copy tocopy tocopy tocopy to

copy fromcopy fromcopy fromcopy from

delete itselfdelete itselfdelete itselfdelete itself

CA

GCA-w

delete itselfdelete itselfdelete itselfdelete itself

copy fromcopy fromcopy fromcopy from

delete neighbordelete neighbordelete neighbordelete neighbor

push principle

GCA-w

pull principle

Fig. 7. Modeling the movement of an agent as CA and as GCA-w. Active cells are
shaded.

360 R. Hoffmann

3.4. Random walks of particles

The GCA-w push principle was used to model the random distribution
of particles. The intention is to show that different variants of random walks
can be modeled and implemented without much effort. The intention was
not to show how realistic these variants model physical phenomena, like in
[20,21]. Four random walk variants were modeled:
(Rsimple) Simple Random Walk. Each particle chooses randomly one of
the nearest NESW neighbors as its moving direction. If there is particle on
the target or it is not selected to move in case of a conflict, it will not move.
(Interchanging of particles is not allowed.)
(Rsmart) Smart Random Walk. The particle first checks which of the
NESW neighbors are free. Then it chooses randomly one direction from this
subset. In the case that no nearest neighbor is free, it cannot move at all.
(Rsmart+) Smart+ Random Walk. The particle checks all neighbors within
Manhattan distance of two. Then the four directions are ordered with re-
gard to the amount of free neighbors within the distance of two. Then one
direction is selected randomly from the “free” directions with the highest
scores.
(R12) Random Walk with 12 Neighbors. A particular set of 12 non-local
neighbors was defined in order to accelerate the distribution (Fig. 8). Each
particle chooses randomly one neighbor out of the given set as its target
position.

Fig. 8. Special neighborhood with 12 neighbors used for the random walk R12.

In the case of write conflicts (more than one source particle wants to
move to the same target position) one of the source particles is selected
randomly to move.

As can be seen from Fig. 9, the distribution evolves faster in the fol-
lowing order of the variants: Rsmart+, Rsmart, Rsimple. The variant R12
distributes the particles faster at the beginning (due to the extended neigh-
borhood) but does not perform so well when time is proceeding (e.g., at
t = 240 the distribution seems qualitatively to be better than for Rsimple
but worse in comparison to Rsmart and Rsmart+).

GCA-w: Global Cellular Automata with Write-Access 361

Rsimple

Rsmart

Rsmart+Rsmart+

R12

t = 0 30 60 120 240

Fig. 9. The evolution of the four variants of random walks. Field size is 40 × 40
with wrap around. At the beginning 20× 20 particles are placed in the middle.

In order to understand the different effectiveness (how fast the initial dis-
tribution converges to a random distribution) of the variants a simple evalu-
ation was conducted for t = 240 when the distribution is already random or
nearly random (Table I). The results are averaged over 10 simulations. The
mobility can be defined as

Mobility = (NParticles −NNotMovedParticles)/NParticles . (1)

TABLE I

Mobility and conflicts for the different random walk variants averaged over 10 runs.

NNotMovedParticles Mobility Total no. No. of write No. of write No. of write
particles not of write conflicts conflicts conflicts
moved out of conflicts with 2 with 3 with 4

400 requests requests requests

Rsimple 128.0 68.0% 37.6 35.1 2.5 0
Rsmart 40.4 89.9% 38.1 36.1 2.0 0
Rsmart+ 13.7 96.9% 13.6 13.3 0.3 0
R12 123.3 69.2% 38.8 36.5 2.3 0

It can be seen that the mobility correlates very well with the effectiveness
of the variants. Note that in these models a particle cannot move for two
reasons: either the target is occupied by another particle or because of a

362 R. Hoffmann

denied request. The total number of write conflicts is about the same for
Rsimple, Rsmart and R12, but much lower for Rsmart+. Write conflicts
with three requests are very rare, and with four requests did not occur.
Note that in this example the percentage of particles was only 25% of the
whole number of cells, e.g., the total number of conflicts increases to around
175 and the mobility decreases to 33% for Rsmart+ when the percentage of
particles is 56%.

We like to reveal some details of the software implementation to those
who like to implement such GCA-w algorithms. The data set is:

F : cell field holding the current generation of cells.
Fnext: cell field holding the next generation in order to allow syn-
chronous updating.
Peff : array holding the effective addresses for each cell (relative x, y
coordinates of the targets). Temporary array.
Conf: array holding the number of write requests. Temporary array.

One computation cycle consists of the following steps:

1. Address calculation. The effective address peff = target of the neigh-
bor is computed for all cells and stored in peff . This address can be
computed for Rsimple and R12 in the previous generation and stored
in the cell to be used directly in the current generation (Basic Model).
The effective address is calculated in the current generation for Rsmart
and Rsmart+ (General Model).

2. Store requests. The write requests to each cell (x, y) are accumulated
and stored in Conf, e.g., if the entry at position (x, y) is 3 than there
are 3 requests on this target.

3. Handle conflicts and write. If (no agent on target and Conf [target]=1)
then move (write to target and delete self). If (no agent on target and
Conf [target] > 1) then select one of the sources randomly and move.

4. Synchronous update. Copy Fnext to F .

In general, the number and the form of these steps may vary depending
on the specific application and the required conflict handling.

4. Conclusion

A novel parallel computing model called GCA-w, Global Cellular Au-
tomata with write access to the neighbors, was presented. GCA-w is an
extension of the GCA model that is related to the Cellular Automata (CA)
model. In the GCA and GCA-w model the neighbors are linked dynamically
to the cell under consideration and the data and the link information are

GCA-w: Global Cellular Automata with Write-Access 363

modified by a local rule. Thereby a cell can decide by itself which shall be
its neighbors in the next generation. The novel GCA-w model overcomes
the restriction that a cell can only modify its own state. Thereby any global
cell in the whole cell array can be the target of an information transfer.
Furthermore “sleeping” cells can be turned dynamically into active cells in
a decentralized way. Sleeping resources might be assigned dynamically to
other active cells leading to better resource utilization or lower power con-
sumption. Conflicts can be solved systematically using a conflict handler
in the target cell. Classical PRAM algorithms as well as other practical
parallel applications can be mapped onto this model without much effort
as shown for one-to-all communication, synchronization, and different vari-
ants of random walks. We expect that the model is practical for a wide
range of applications with dynamic activities, like diffusion limited aggre-
gation, crystal growth, pattern formation, forest fire, traffic simulation or
agent systems.

REFERENCES

[1] R. Hoffmann, Das massiv-parallele Berechnungsmodell GCA-w (Global
cellular automata with write-access), Fachgebiet Rechnerarchitektur, Tech-
nische Universität Darmstadt, Internal Report (1/2009),
http://www.ra.informatik.tu-darmstadt.de/forschung/publikationen/

[2] J. Jendrsczok, R. Hoffmann, Th. Lenck, Generated horizontal and vertical
data parallel GCA machines for the N -body force calculation, 22nd ARCS
Conference, LNCS 5455/2009.

[3] J. Jendrsczok, R. Hoffmann, P. Ediger, A generated data parallel GCA ma-
chine for the Jacobi method, 3. HiPEAC Workshop on Reconfigurable Com-
puting, HiPEAC Conf. Cyprus 2009.

[4] J. Jendrsczok, R. Hoffmann, J. Keller, Implementing Hirschberg’s PRAM-
algorithm for connected components on a global cellular automaton, Interna-
tional Journal of Foundations of Computer Science (IJFCS) Vol. 19, No. 6,
2008.

[5] J. Jendrsczok, P. Ediger, R. Hoffmann, A scalable configurable architecture
for the massively parallel GCA model, In: IEEE International Symposium
on Parallel and Distributed Processing (IPDPS), Workshop on Advances in
Parallel and Distributed Computational Models (APDCM), April 2008.

[6] A. Osterloh, J. Keller, Das GCA-Modell im Vergleich zum PRAM-Modell,
Informatik-Bericht 350 — 3/2009, FernUniversität in Hagen,
http://pv.fernuni-hagen.de/publikationen.php

[7] S. Achasova, O. Bandman, V. Markova, S. Piskunov, Parallel substitution
algorithms, theory and applications, World Scientific, 1994.

[8] W. Heenes, Entwurf und Realisierung von massivparallelen Architekturen für
Globale Zellulare Automaten, Dissertation, Technische Universität Darmstadt
(2007),
http://www.ra.informatik.tu-darmstadt.de/forschung/publikationen/

364 R. Hoffmann

[9] J. Jendrsczok, P. Ediger, R. Hoffmann, The global cellular automata ex-
perimental language GCA-L, Technischer Bericht, RA-1-2007, Technische
Universität Darmstadt, FB Informatik (2007),
http://www.ra.informatik.tu-darmstadt.de/forschung/publikationen/

[10] J. Jendrsczok, R. Hoffmann, J. Keller, Hirschberg’s algorithm on a GCA and
its parallel hardware implementation, 13th International European Conference
on Parallel and Distributed Computing (Euro-Par 2007).

[11] W. Heenes, R. Hoffmann, J. Jendrsczok, A multiprocessor rrchitecture for the
massively parallel model GCA, IPDPS/SMTPS 2006, IEEE Proceedings: 20th
International Parallel and Distributed Processing Symposium.

[12] Chr. Ehrt, Globaler Zellularautomat: Parallele Algorithmen, Diplomarbeit,
Technische Universität Darmstadt, 2005,
http://www.ra.informatik.tu-darmstadt.de/forschung/publikationen/

[13] R. Hoffmann, W. Heenes, M. Halbach, Implementation of the massively par-
allel model GCA, In PARELEC, IEEE Computer Society (2004) 135–139.

[14] R. Hoffmann, K.-P. Völkmann, W. Heenes, GCA: A massively parallel model,
IPDPS 2003, IEEE Comp. Soc.

[15] R. Hoffmann, K.-P. Völkmann, S. Waldschmidt, W. Heenes, GCA: Global cel-
lular automata, a flexible parallel model, In Proceedings of: 6th International
Conference on Parallel Computing Technologies PaCT 2001, Lecture Notes in
Computer Science (LNCS 2127), Springer (2001).

[16] R. Hoffmann, K.-P. Völkmann, S. Waldschmidt, Global cellular automata
GCA: An universal extension of the CA model, In: T. Worsch (Ed.): ACRI
Conference (2000).

[17] J. Keller, Chr. Kessler, J. Träff, Practical PRAM Programming, Wiley, 2001.
[18] J. JaJa, An Introduction to Parallel Algorithms, Addison–Wesley, 1992.
[19] R. Hoffmann, The GCA-w massively parallel model, In Proc. of 10th Inter-

national Conference on Parallel Computing Technologies PaCT2009, Lecture
Notes in Computer Science, Volume 5698/2009.

[20] O. Bandman, Comparative study of cellular-automata diffusion models, Lec-
ture Notes in Computer Science, Vol. 1662, p. 756, Springer, 1999.

[21] O. Bandman, Mapping physical phenomena onto CA-models, In Automata-
2008 Theory and Application of Cellular Automata, Eds.: A. Adamatzky et
al., p. 381–395, Luniver Press, 2008.

[22] M. Halbach, R. Hoffmann, Parallel hardware architecture to simulate movable
creatures in the CA model, In Proceedings of: 6th International Conference
on Parallel Computing Technologies PaCT2007, Lecture Notes in Computer
Science 4671, Springer, 2007.

[23] P. Ediger, R. Hoffmann, Optimizing the creature’s rule for all-to-all commu-
nication, In Automata-2008 Theory and Application of Cellular Automata,
Eds.: A. Adamatzky et al., p. 398–410, Luniver Press, 2008.

