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Electrochemical activity of the sinoatrial node — the first natural heart
pacemaker, relies on coordinated activity of sinoatrial cells and on sig-
nal transduction by intercellular connections. The modified Greenberg–
Hastings automaton is used to model the electrochemical activity of a cell
and basic intercellular interactions. A stochastic 2D lattice with prefer-
ence set to lateral connections is a starting point in the construction of the
network of intercellular connections. Then a flat structure of the network
is carefully wrinkled by rewiring procedure. The rewiring is restricted to
neighboring cells — local rewiring, and it favors densely connected cells —
preferential rewiring. In simulations we find that if density of intercellu-
lar connections reaches d = 0.60 then spirals of activity clusters emerge
robustly. However to observe strong spirals: oscillating with the shortest
period possible and driving dynamics in the whole network, the intercellu-
lar connections have to be rewired locally and preferentially. The critical
value of density corresponds very accurately to the known value at which
the canine sinoatrial node works.

PACS numbers: 87.19.Hh, 87.17.Aa, 87.18.Mp

1. Introduction

A normal contraction of the heart is initiated by the sinoatrial node
(SAN) — the first natural pacemaker of the heart [1–3]. The area of the
SAN is well defined basically due to the anatomical boundaries. The SAN is
located on the right atrium at the junction of the crista terminalis with ve-
nous tissue — the superior and inferior vena cava, and the intercaval region
between the two great veins. Moreover, the SAN tissue differs significantly
from the other parts of the cardiac muscle [3–7]. The myocytes from the SAN
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are small and “empty” — without well-developed cardiac sacroplasmic retic-
ulum which indicates that these cells do not have ability to contract. But
in the contrast with other cardiac cells, the pacemaker cells have the ability
to produce the rhythmic electrochemical changes in the cellular membrane
— called the self-excitation property.

The space organization of the SAN cells is also different from organization
of myocytes in the working parts of the heart. The cells are scattered rather
rarely, like at random, they are surrounded by connective tissue, mainly
collagen and fibroblasts. But the basic way to pass the membrane activity
is by cell-to-cell connections, achieved here via gap junctions built from
the connexin Cx45 while the connexin Cx43 dominates in the rest of the
heart. By the special connections the SAN tissue is protected from electrical
activations arriving from the exterior of the SAN. The general organization
of the SAN is said to remain the organization of the embryo heart at the
early stage of development [3]. Although the SAN as a whole is recognized
as a uniform functional pacemaker unit, only small part of it consists of
primary pacemaker cells. This part is called the leading pacemaker site and,
for example, in the case of a rabbit it has about 1% of cells [6]. These cells are
early generators of the excitation waves which first spread to the rest of the
nodal tissue and then are passed to the other parts of the myocardium. Zipes
et al. [2] collects the widely accepted results about the elecrophysiology of the
heart while Mangoni et al. [3] review the results of 40 years of investigations
of the SAN.

Despite all complex cellular processes involved in the SAN functioning
— the mentioned property of the cell self-excitation and sophisticated ways
of signal transduction mechanisms via gap junctions, there are problems re-
lated to the arrangement of cells. A cell of the canine SAN has at average
4.8± 0.7 connections with other cells while any ventricle cell has 11.3± 2.2
neighbors [8, 9]. It is reasonable to ask how these rather poorly connected
cells of the sinoatrial node can drive the heart contraction? It is also known
that oscillations produced by the leading pacemaker site are faster than os-
cillations of an individual cell. Therefore, the intercellular network of inter-
actions should be crucial for the emergence of this phenomena. It is known
that the structure of intercellular connections is heterogeneous [9]. Most
of the canine SAN cell connections, namely approximately 75% are found
to be lateral but a ventrical cell has on average only 37% lateral connec-
tions. The lateral connections are known to be less efficient in transmitting
electrochemical signals than, e.g., the end-to-end connections.

In the following we propose a model for the SAN tissue. The model
considers cells interacting along a network formed from intercellular con-
nections. We propose a construction of a heterogeneous network and then
test the role of heterogeneity. Our main objective is to consider whether
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the robust SAN automatically is supported by the special topology of inter-
cellular connections. The considerations of this paper continue our earlier
research though the present model differs in details from the model presented
previously [10–12].

The paper is organized as follows. In Sec. 2 the model of the SAN
tissue is presented in two steps: by describing oscillatory dynamics of a cell,
and then by designing a network of intercellular connections. In Sec. 3 the
phenomenon of persistent entrainment is introduced and its role in producing
the shortest oscillations is discussed. Sec. 4 presents results obtained with
simulations and Sec. 5 compares our main observations to the biological
facts.

2. The model

We refer to [1, 10, 11] for the explanation of how the model is built and
how it takes into account physiological facts.

2.1. Modeling of electric activity of cell membrane

A three-state cellular automaton known as the Greenberg–Hastings (GH)
cellular automaton is our starting point to model the excitable medium
[13,14]. However we modify the GH model to reconstruct the special prop-
erties of the SAN cells. Our proposition follows ideas of [15] and [16] and
goes further. Fig. 1 illustrates the dynamics of an individual cell.

Fig. 1. Intrinsic cycle of a cell. Grey (red) arrows indicate at the phase of a cycle
when a cell sends signal to other (outward) or reads signals from others (inward).
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Formally let Σ∗ = {
(
σ
s

)
: σ ∈ Σ, s = 1, 2 . . . , nσ} be the state space of

a cell, where:

• Σ = {E,R,A} is a discrete state set describing the three main phases
of the cellular membrane electrical properties: E — excitation, R —
refractory and A — activation phase, subsequently changed in the
intrinsic cycle of any self-excited cell: E → R→ A→ E → . . . ;

• next: Σ → Σ defines next state in the life cycle of a cell, i.e.,
next (E) = R, next (R) = A, next (A) = E;

• s counts time steps spent by a cell in a state σ;

• nσ denotes the maximal time in which a cell can stay in a state σ;
correspondingly, we define nE , nR and nA, so nσ ∈ {nE , nR, nA};

• at each time step t the value of nE , nR and nA can be shortened with
probability, (s(t)/nσ)ξ where ξ > 1 has a fixed value.
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than threshold TF ,(
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at rate 1−

(
s(t)
nσ

)ξ
.

(1)

Hence, in the absence of any external stimulus each cell performs the intrin-
sic cyclic dynamics. Notice that if ξ is significantly greater than 1 then the
intrinsic cycle is rarely shortened and the evolution can be seen as determin-
istic. In such case the period is

T = nE + nR + nA .

In the case of deterministic dynamics the shortened periods can occur due
to interactions with other cells. The shortest possible cycle is

T ∗ = nE + nR + 1 .

The intercellular interactions are modeled as follows. A cell becomes excited
E in the next time step if at present a cell is in the activation state A and the
number of its nearest-neighbors in E state is not smaller than the threshold
value TF .
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2.2. Modeling of intercellular connections

The SAN tissue is almost flat and therefore any two-dimensional lat-
tice can be a good starting point. Let N cells be located in vertices of
a square lattice N = L2, see Fig. 2. Let interactions between cells take
place only via links established between the vertices. The procedure of
building a network of intercellular connections goes in two steps. At first,
intercellular connections are established at random though with preference
set to lateral connections. By this preference the heterogeneity to the net-
work structure is injected, what allows to study the role of domination of
lateral connections. Then, in the second step, the connections established
are carefully rewired making the lattice structure more similar to the real
three dimensional medium. The rewiring algorithm (based on the classical
Watts–Strogatz [18] rewiring rule of diffusive type) considers changes be-
tween nearest neighbors only. Additionally, while choosing a neighbor to
break a connection, the preference is set to neighbors which at the moment
have less numbers of neighbors. By this rule, densely connected cells are
protected, hence favored. Due to rewiring procedure the heterogeneity is
related with density of connections.

Fig. 2. A stochastic network of intercellular connections. The leftmost and right-
most columns are the output cells to other parts of the heart.

To specify formally the above description let us introduce the two fol-
lowing parameters which will control the network topology:
K: parameter of stochastic heterogeneity — for a given dlateral ∈ [0, 1]
a lateral link on a square lattice is created with a probability dlateral;
a vertical or horizontal link is created with a probability dlateral/K.

Additionally, cells from the leftmost and rightmost columns are the out-
put cells of the SAN and input cells to the crista terminalis and atria are
always connected horizontally to the next cell because horizontal connec-
tions are dominant among cells of crista terminalis. Each isolated cell,
if happens, is linked to its nearest right neighbor. By these two extra rules
some extra horizontal connections appear. Notice that cells from the top
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and bottom rows have less connections. This property can be thought of
as imitating the connective tissue barrier shielding the SAN from the atria
hyperpolarizing influence [5].

Notice that the mean density of edges d on the 2D lattice is

d =
dlateral

2

(
1 +

1
K

)
, (2)

which means that the mean vertex degree is 8d. Recalling facts known from
physiology, mentioned in the Introduction, we see that d = 0.60 and K = 4
are the values which are referred to the nature.
J: parameter of intensity of wrinkling — for a given parameter p ∈ [0, 1]
and a cell A, the probability to break a link between cells A and B is
pbreak = p/deg(B) where deg(B) denotes the vertex degree of a B cell.
A new cell B′ is linked to the cell A in exchange to the cell B. B′ is chosen
at random from the set of actual nearest neighbors of the cell B. Breaking
the connection with a leaf is forbidden. A random choice of a cell A is
repeated N times what is referred as one Monte Carlo (MC) step. The table
with information about vertex degrees is updated once in each MC step. In
the following we always set p = 0.01 to weaken the influence of the limited
information about vertex degrees. Eventually, the intensity of rewiring is
measured by the number of MC steps J applied to a network.

3. Persistent entrainment

Entrainment is the process by which two interacting oscillating systems
accept the same period. This mechanism is considered as essential for the
achievement of coordination and rhythmic impulse generation by the SAN
[17]. In the system we investigate, it is easy to find circumstances when
the entrainment takes place. But here there are also possibilities that the
process of adjusting oscillatory phases between cells becomes permanent.
We will call such cell-to-cell interaction the persistent entrainment.

In the case when the threshold value TF is equal to 1, the simplest
possibility to observe the persistent entrainment is to study a triangle of
cells with properly adjusted phases — see Fig. 3 left-top. If the threshold
value TF grows then the more complicated structures are needed to result
in the permanent entrainment. In Fig. 3 right, an example of such structure
is shown for TF = 2. It consists of 9 cells and it demands locally changed
topology.

It is easy to notice that the persistent entrainment needs the presence
of cycles (i.e. closed paths in the graph description) in the network of in-
tercellular connections. However, from the physiological point of view the
triangular cell-to-cell organizations means wasting of electrochemical energy
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Fig. 3. Left-top: The simplest structure of interactions which can lead to oscilla-
tions with T ∗ on 2D lattice, case TF = 1. Right: Example of a structure which can
lead to oscillations with T ∗ on rewired locally lattice in the case of TF = 2. Black
arrows denote regular edges of 2D lattice, gray (green) edges can appear due to
rewiring. White (yellow) cells excite gray (green) cells; gray cells excite dark black
(blue) cells, and dark blue cells excite yellow cells. Left-bottom: Example of evolu-
tion driven by the persistent entrainment between three cells when nE = 3, nR = 5
and any nA.

of a propagated signal. Moreover, since the common period of cells entan-
gled in the persistent entrainment is the shortest one T ∗, if the evolution is
deterministic, then these cells live independently of other neighbors, hence,
they block propagations of a signal. So the two SAN aims: being a source of
shortest oscillations and efficient propagation of a signal, are opposed each
other from the point of view of the network organization. Therefore it is
interesting to study whether this conflict can lead to the optimum solution
when both aims are robustly and efficiently performed. In particular, we
ask how the heterogeneity of intercellular connections influences the optimal
solution.

In the following we consider TF = 2 to increase the necessary effort for
a system to produce the common effect.

4. Results
4.1. Topological properties of networks

From the construction of the network one can see that, in practice, we
deal with networks where heterogeneity is one of three types: (a) because
of the dominance of lateral connections: K > 1 and J = 0, (b) because of
rewiring: K = 1 and J > 0, and (c) initially dominated lateral connections
are then rewired: K > 1 and J > 0. Notice that rewiring leads to emerging
cells which are connected to others more densely than it happens on the
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ordinary square lattice, namely, their vertex degree is greater than 8. The
unwanted effect of the higher intensity of rewirings is that more isolated
cells appear, see [10, 11]. In the case of J = 200 about 1/3 cells are leaves.
Such cells cannot be excited by interactions when TF = 2 because of their
isolation. So their presence limits the efficient signal propagation.

Here we concentrate on the cyclic structures. In particular, we inves-
tigate the number of triangles on the networks. The results are presented
in Fig. 4. It is easy to see that the number of triangles decreases signifi-
cantly if initial domination of lateral connections grows — bigger K effects,
in general, in smaller number of triangles. The intensity of wrinkling J
also influences the number of triangles. If all directions are initially almost
equivalent then the number of triangles decreases with the increase of J —
case K = 1, 2. But if initial domination of lateral connections is set — case
K = 3, 4, then the number of triangles grows though their characteristics
stay significantly below the cases K = 1, 2. Hence each type of the network
(a), (b) and (c) has a different local topology.

Fig. 4. Distribution of triangles for different heterogeneity parameter K and differ-
ent intensity of rewiring J .

4.2. Deterministic evolution: ξ � 1

Let us assume that the ratio of cells evolving with the shortest pe-
riod T ∗ measures the level of the self-organization of oscillatory phases of
cells. We simulated systems with the deterministic dynamics of a cell at:
nE = 10, nR = 20, nA = 20 and TF = 2. At such values nE , nR, nA the
dominant frequency is expected to be T (here, T = 50, T ∗ = 31) if a system
is considered on a plain lattice [11].
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Fig. 5 left shows the distributions of cycle lengths, received from all cells
from the networks homogeneous K = 1 and not rewired J = 0, with respect
to the density d of intercellular connections. The distributions were found
after 10 000 time steps (to give a system time to stabilize first) during the
next 10 000 time steps. We see that when density d grows then the transition
between two overwhelming network states is observed. Almost all cells have
T period and almost all cells have T ∗ period. The transition takes place
for 0.60 < d < 0.65 — compare a plot formed by black triangles to a plot
formed by hexagons in Fig. 5. The switch between the two periods T = 50
and T ∗ = 31 is sharp in the case of output cells, Fig. 5 right. All output
cells evolve either with T or with T ∗.

Fig. 5. Distributions of cycle lengths of all (left) and output (right) cells in the
stationary state. The network is homogeneous K = 1 and the rewiring algorithm
is not applied J = 0. Notice that the vertical axis is a log-type.

When the intensity of rewirings grows then the transition moves to the
value slightly below d = 0.60, see Fig. 6 middle panel. At d = 0.60 and
J = 100 most of output cells follow dynamics with the shortest period.
Notice that J = 100 means that, at average, each connection is rewired
with probability close to 1. Because of this the initial structure of a lattice
is significantly modified. If the intensity is too high, e.g., J = 200, then
other periods appear among output cells (even at d = 0.75 10 % of output
cells have T period) which weakens the total effect of the self-organization
to beating with the shortest period.

If the system is considered on the heterogeneous network: K=4, but not
rewired J=0, then the transition is not observed for available edge densities d.
But when we apply the wrinkling algorithm then the transition appears at
d close to 0.63 even at small intensity of rewirings, namely, if J = 20, see
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Fig. 6. Distributions of periods in output cells in the case of deterministic evolution.
The network is homogeneous K = 1 but the intensity of rewiring is increasing
20, 100, 200.

Fig. 7, left panel. Notice that d = 0.63 in the case of K = 4 means that
(according to (2)) all lateral connections are present. When the intensity of
rewirings grows then the transition takes place for 0.59 < d < 0.63. But
again if the intensity of rewirings is too high (J = 200) then plenty of other
periods (unwanted) appear among output cells.

Fig. 7. Distributions of periods in output cells when evolution is deterministic. The
network is heterogeneous K = 4 and the intensity of rewirings increases 20, 100,
200. Numbers given in brackets correspond to dlateral.

4.3. Stochastic evolution: emergence of leading pacemaker sites

The evolution of real cells cannot be strictly deterministic — it is an
obvious remark. Our proposition to randomize the lengths of particular
states in the intrinsic cellular cycle seems to be a reasonable solution how to
model variability in the period length of each individual cell. It is valuable
to start with presenting snapshots of network configurations observed in
stationary states for different model parameters, see Fig. 8.
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Fig. 8. Examples of configurations observed in the stochastic system for different
model parameters of the network topology, nE = 10, nR = 20, nA = 20 and TF = 2.
Black color denotes cells in E state, gray cells in A state, and white cells in R. The
lack of gray color is a sign of the evolution with period T ∗.

The well-established spiral patterns made of cells being in the same state
are claimed to be a sign of a proper propagation of impulses in the cardiac
tissue [19]. We see that regular large clusters start to emerge if a network
is sufficiently densely connected (d > 0.60). Regular spirals are observed
at higher densities if K = 1. But if a network is heterogeneous because
of either preference to lateral connections (case K = 4) or due to suitable
rewiring intensity J = 100 then regular spiral patterns emerge. The sources
of the spirals can be considered as the leading pacemaker sites.

4.4. Stochastic evolution — properties of output cells

When investigating details of oscillations in the system driven by stochas-
tic dynamics, it is important to remember that random shortenings of each
phase of electric activity of a cell affect the length of a cell cycle. The
periods of cells take random values — lower than T = 50 or T ∗ = 31.
Because of this variability maintaining the permanent entrainment needs
special circumstances — set e.g., by topology, and changes in the location
of the leading pacemaker site could be present.
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In Fig. 9 we present results describing systems evolving on heterogeneous
networks which appeared to be best in the case of deterministic dynamics:
networks that are initially not heterogeneous K = 1 but then become het-
erogeneous after local preferential rewirings J = 100, and networks which
initially are dominated by lateral connections K = 4 and then wrinkled at
J = 100. In Fig. 9, together with the distributions of periods found in
output cells, we show the distributions of periods in cells that are the most
densely connected to the networks — cells for which vertex degree is greater
than 8. Such cells are possible sources of the structures allowing for the
persistent entrainment.

Fig. 9. Distribution of periods in output cells and in cell that are densely connected
(deg>8) to the network. Evolution is stochastic at nE =10, nR =20, nA =20, ξ=10.

It is easy to read the lengths of dominating cycles for a given densities.
In the case of K = 1 the transition appears at a density d identical to the
one observed in the deterministic case. But if K = 4 then the transition to
the evolution with the shorter periods appears as the smeared transition —
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almost all oscillations are present equivalently among cells of the output and
densely connected. The transition takes place if 0.59 < d < 0.63. One can
interpret this result that the transition means here admitting an evolution
with a wide spectrum of possible oscillations. It is possible only if different
lengths of phase A are permanently present in the system. Such property is
extremely important for the autonomic regulation of the heart rate [1, 2].

5. Conclusions

From biological investigations it is known that the SAN structure is dif-
ferent from the rest of the heart. There is no controversy among researchers
about rare density of cells and heterogeneity of the SAN tissue. In the pre-
sented article we proposed a bio-inspired model of the SAN which allowed
to investigate whether and how topology of intercellular connections could
influence the functionality of the SAN. Specially, we concentrated on two
problems: how density of intercellular connections affected the activity of
the SAN, and what was the role of heterogeneity in the intercellular con-
nections. If the heterogeneity was modeled in two ways: by preferences
set to the lateral connections or/and by local preferential rearrangement of
connections.

By using the cellular automata approach we always strongly oversimplify
modeled phenomena. However, we believe that we were still able to learn
valuable facts about the modeled system [20]. In simulations we found that
the density d = 0.60 of intercellular connections was critical for the proper-
ties of the modeled phenomena. This critical value corresponds very well to
the known value of cell-to-cell connections 4.8 in a dog as it was described
in the Introduction. However large and usually individual spirals emerged
robustly only if the network of connections was heterogeneous in a special
way — the reason for the heterogeneity was the connection’s rewiring. The
local rewiring spreads the influence of an individual cell to other cells than
a square lattice nearest neighbors. Such connections have not been found in
the mentioned biological observations what may suggest the our modeling
contradicts to solutions found by the nature. But the variability among the
SAN cell shapes (namely, spindle, elongated, spider [3]) is so large when
compared to other myocytes, then the standard classification of types of
intercellular connections considered by Luke et al. [8] can be confusing.

Many thanks to G. Graff, J. Kaczmarzyk, A. Kolesiak, A. Posiewnik, and
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