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Cellular automata (CA) may be viewed as simple models of self-organiz-
ing complex systems. Here, we focus on an important class of CA, the so-
called lattice-gas cellular automata (LGCA), which have been proposed as
models of spatio-temporal pattern formation in biology. As an example, we
introduce a LGCA model for a simple biological growth process based on
randomly moving and proliferating agents. We demonstrate how a mean-
field approximation can yield insight into the formation of spatial patterns
and calculate important macroscopic observables for the biological growth
process. In particular, we address the role of the diffusion strength in
the approximation by distinguishing well-stirred and spatially distributed
cases. Finally, we discuss the potential and limitations of the mean-field
description in analyzing biological pattern formation.

PACS numbers: 87.17.Aa, 87.10.Hk, 05.50.+q

1. Introduction

Cellular automata (CA) are discrete dynamical systems. They were in-
troduced by J. von Neumann and S. Ulam in the 1950s in an attempt to
model biological self-reproduction [16]. Since then, it has become clear that
CA have a much broader potential as models for physical, chemical and bi-
ological systems. In particular, CA models have been proposed for a large
number of biological applications for studying the emergence of collective
macroscopic behavior arising from the microscopic interaction of individ-
ual components, such as molecules, cells or organisms [5]. However, cur-
rently there exists a huge jungle of different rules for often the same or
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similar processes (e.g. random walk or proliferation). Therefore, there is
need for a specification and classification of CA rules. Such a classifica-
tion approach has comprehensively been performed for one-dimensional au-
tomata [18]. Furthermore, examples of successful analysis of CA models
beyond purely visual inspection of simulation outcomes are still rare.

Here, we introduce lattice-gas cellular automata as models for collec-
tive behavior emerging from microscopic migration and interaction pro-
cesses [5, 8]. LGCA represent a class of CA whose structure facilitates
mathematical analysis. Implementing movement of individuals in tradi-
tional cellular automaton models is not straightforward, as one site in a
lattice can typically only contain one individual, and consequently move-
ment of individuals cause collisions when two individuals move to the same
empty site. Classical CAs tackle the same problem in different ways, where
a several of them are described in [1]. In a lattice-gas model this problem is
avoided by having separate channels for each direction of movement and im-
posing an exclusion principle (Fig. 1). Furthermore, the update rule is split
into two parts which are called interaction and propagation, respectively.

Fig. 1. Example of node configuration in a lattice-gas cellular automata: channels
of node r in a two-dimensional square lattice (b = 4) with one rest channel (β = 1).
Gray dots denote the presence of a particle in the respective channel.

The interaction rule of LGCA can be compared with the update rule for CA
in that it assigns new states to each particle based on the states of the sites
in a local neighborhood. After the interaction step the state of each node
is propagated to a neighboring node (Fig. 2). This split of the update rule
allows for transport of particles while keeping the rules simple. The emer-
gent collective behavior, e.g. spatio-temporal pattern formation in a LGCA
shows up in the macroscopic limit which can be derived from a theory of
statistical mechanics on a lattice, e.g. [12,17]. In place of discrete particles,
Lattice Boltzmann (LB) models deal with continuous distribution functions
which interact locally and which propagate after collision to the next neigh-
bor node. LB models can be interpreted as mean-field approximations of
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Fig. 2. Propagation in a two-dimensional square lattice-gas cellular automata with
speed m = 1; lattice configurations before and after the propagation step; black
dots denote the presence of a particle in the respective channel.

LGCA. LGCA and LB models have been originally introduced as models
of fluid flow [8]. Meanwhile, LGCA and LB models have found numerous
applications in physics, chemistry and more recently biology [3–6,14].

In particular, LGCA have been proposed as mathematical models for bi-
ological pattern formation. For a selection of biology-motivated interactions,
it has been shown in a recent book [5] that a corresponding lattice-Boltzmann
approximation can be adopted to analyze the emergence of spatio-temporal
patterns. The central step is the derivation of a spatio-temporal mean-field
approximation of the automaton stochastic process. However, completely
disregarding the spatial aspect would lead to qualitatively false model pre-
dictions as highlighted in a book review by Boerlijst [2]. Therein, a LGCA
model for a simple growth process is approximated by a purely temporal de-
scription, the logistic equation, which is then analyzed to demonstrate the
qualitative failure of the purely temporal approximation.

In this paper, inspired by the interesting discussion in [2], we provide
an example of spatio-temporal insight to be gained from a mean-field finite-
difference lattice-Boltzmann equation which we derive for a logistic growth
process. We will directly compare two approximations with the results of
stochastic LGCA simulations. First, under the assumption of a well-stirred
system, we derive the temporal mean-field equation of the LGCA. Then,
assuming finite diffusion strength and based on the spatio-temporal mean-
field description of the microscopic growth process, we calculate by means
of a Chapman–Enskog expansion technique the corresponding macroscopic
partial differential equation (PDE), which is a reaction-diffusion equation
of Fisher–Kolmogorov type [7]. Simulation results of the LGCA are found
to be in very good agreement with the mean-field PDE, in contrast to the
purely temporal mean-field approximation. From this mean-field PDE we
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calculate important macroscopic observables of biological growth, such as
total number of particles and per capita growth rate, and we reveal their
dependence on the microscopic growth and transport parameters. Finally,
we discuss the potential and limits of the proposed methodology.

2. The model

In this section, we define a LGCA model for a biological growth process.
In particular, we will present the model assumptions and simplifications.

2.1. Notations and nomenclature

We consider a lattice-gas cellular automaton [5] defined on a two-dimen-
sional regular lattice L = {1 . . . L1} × {1 . . . L2} ⊂ Z2, where L1, L2 are
the lattice dimensions. Particles1 move on the discrete lattice with dis-
crete velocities, i.e. they hop at discrete time steps from a given node to
a neighboring one, as determined by the single particle speed. The set of
velocities for the square lattice as considered here, is represented by the
two-dimensional channel velocity vectors:

c1 =
(

1
0

)
, c2 =

(
0
1

)
, c3 =

(
−1
0

)
, c4 =

(
0
−1

)
, c5 =

(
0
0

)
.

In each of these channels, we consider an exclusion principle, i.e. we al-
low at most one particle per channel. We denote by b̃ = b + β the total
number of channels per node which can be occupied simultaneously, where
β is the number of channels with zero velocity, the so-called rest channels
(see Fig. 1). The parameter b is the coordination number, i.e. the num-
ber of velocity channels on a node. We represent the channel occupancy by
a Boolean random variable called occupation number ηi(r, k) ∈ {0, 1}, where
i = 1, . . . , b̃, r = (rx, ry) ∈ L ⊂ Z2 the spatial variable and k ∈ N the time
variable. The b̃-dimensional vector

η(r, k) := (η1(r, k), . . . , ηb̃(r, k)) ∈ E

is called node configuration and E = {0, 1}b̃ the automaton state space. Node
density is the total number of particles present at a node r ∈ L, and denoted
by:

n(r, k) :=
b̃∑
i=1

ηi(r, k) .

1 LGCA models are individual-based models. Although our model has a biological
motivation through the proliferation of cells, we are going to use the term particle
instead of cells. The reason is that our model definition is not “cell specific” and can
be equally well used for physical particles or other proliferating individuals.
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2.2. LGCA dynamics

In our automaton model, particle dynamics are defined by rules. Auto-
maton dynamics arise from the application of three rules (operators): Prop-
agation (P), reorientation (O) and growth (R). In particular, the reorienta-
tion and the propagation operators describe particle motion while the growth
operator controls the change of the local number of particles on a node. In
the following, we present these operators in detail.

2.2.1. Propagation (P)

The process of particle movement is modeled by the propagation step.
The propagation step is deterministic and it is governed by an operator P.
By the application of P all particles are transported simultaneously to nodes
in the direction of their velocity, i.e. a particle residing in channel (r, ci) at
time k is moved to a neighboring channel (r+mci, ci) during one time step
(Fig. 2). Here m ∈ N determines the speed and mci is the translocation
of the particle. The particles residing on the rest channel do not move
since they have zero velocity. In terms of occupation numbers, the state of
a channel (r +mci, ci) after propagation becomes:

ηi(r +mci, k + τ) = ηP
i (r +mci, k) = ηi(r, k) ,

where τ ∈ N is the automaton’s time-step. We note that this operator is
mass and momentum conserving.

2.2.2. Reorientation (O)

The reorientation operator is responsible for the redistribution of parti-
cles within the velocity channels of a node, providing a new node velocity
distribution. Here, we assume that the particles are just random walkers.
A possible choice for the corresponding transition probabilities is

P
(
η → ηO

)
(r, k) =

1
Z
δ
(
n(r, k), nO(r, k)

)
, (1)

where Z =
∑
ηO(r,k) δ(n(r, k), nO(r, k)) is a normalization factor. The Kro-

necker δ guarantees the mass conservation of this operator. For an intuitive
understanding of the rule see Fig. 3.

The particular choice for the reorientation operator is one out of various
possible ways to describe random motion by means of LGCA [4, 5]. Our
choice greatly simplifies the subsequent analytical derivation of the equations
describing the meso- and macroscopic evolution of the automaton.
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Fig. 3. Reorientation rule of random motion: The left column corresponds to the
possible node densities n(r, ·), with node capacity b̃ = 4. The central column
provides all possible node configurations, while the right column indicates the re-
spective transition probabilities (Eq. (1)).

2.2.3. Growth (R)

In our model, particles are allowed to proliferate if there is enough space.
In particular, we assume a microscopic volume exclusion growth dynamics,
where the maximum capacity is defined by the node capacity b̃. The effect of
local volume exclusion on growth is also known as carrying capacity-limited
or contact-inhibited growth.

Let us define the new occupation number after the application of the
growth operator R:

ηRi (r, k) = ηi(r, k) +Ri(r, k) . (2)

The Ri models the birth of a new particle on a node r at time k. For the
creation of a new particle on a node at least one free channel is required.
This condition can be formulated in the following way:

Ri(r, k) = ξi(r, k)(1− ηi(r, k)) , (3)

where ξi(r, k)’s are random Boolean variables, with
∑b̃

i=1 ξi(r, k) = 1, and
the corresponding probabilities are:

P (ξi(r, k) = 1) = P
({
ηR
i (r, k) = 1

}
∧ {n(r, k) > 0}

)
, (4)

which is the probability that a newly created particle occupies a channel i
and that there exists at least one particle on node r. For analytical calcula-
tions, we assume the independency of these two events. Moreover, we define
r = P ({ηR

i (r, k) = 1}) as the probability of a new particle occupying the
channel i. Together we have

P (ξi(r, k) = 1) = P
({
ηR
i (r, k) = 1

})
P ({n(r, k) > 0}) = r

n(r, k)
b̃

. (5)
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2.3. Microdynamical equations

The dynamics defined above are fully specified by the following micro-
dynamical equations:

ηi(r +mci, k + τ) =
b̃∑

j=1

µj(r, k)ηRj (r, k) , (6)

ηRi (r, k) = ηi(r, k) +Ri(r, k) .

The first equation (6) refers to the redistribution of particles on the velocity
channels and the propagation to the neighboring nodes. The second equation
coincides with (2). The µj(r, k) ∈ {0, 1} are Boolean random variables which
select only one of the b̃ terms of the r.h.s. of Eq. (6). Therefore, they should
obey the relation

∑b̃
j=1 µj = 1. In particular, for our specific choice (section

2.2.2) of the reorientation operator (O), the mean occupation (“current”) of
a channel j is: 〈µj〉 = 1/b̃, j = 1, . . . , b̃.

Finally, we define some useful notations which are employed in the rest
of the text: fi(r, k) = 〈ηi(r, k)〉 as the single particle distribution or mean
occupation number of a channel at a node r and time t, and the mean node
density as ρ(r, k) = 〈n(r, k)〉 =

∑b̃
i=1 fi(r, k). In the following, we introduce

the mean-field approximation of our growth LGCA.

3. Mean-field analysis

This section introduces the mean-field (MF) analysis of the above defined
growth LGCA. The main idea of the mean-field approximation is to replace
the description of many-particle interactions by a single particle description
based on an average or effective interaction. Thereby, any multi-particle
problem can be replaced by an effective problem, that can be stated in the
form of a macroscopic description such as an ordinary differential equation
(ODE) or a PDE.

We introduce the derivation of the mean-field approximation under the
assumption of a well-stirred case (for which the diffusion coefficient diverges)
and a spatially distributed case, i.e. a finite diffusion strength (< ∞) is
assumed.

3.1. Well-stirred system

Here, we derive a mean-field approximation of our LGCA under the
assumption of a well-stirred system [11]. In automaton terms, within one
time step (k, k+τ) the transport operator (6), which randomly reshuffles the
particles on the velocity channels and propagates them to the neighboring
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nodes, is repeatedly applied until the system is homogenized and relaxes to
a single binomial distribution over the lattice, i.e. (P ◦O)lD , where lD →∞
[19]. Phenomenologically, a well-stirred system corresponds to a divergent
diffusion coefficient, i.e. D → ∞. That means that the characteristic time
of growth is much slower than the characteristic time of particle motion
(diffusion time). Neglecting all spatial correlations, we define:

Pbinom(n(r), ρ) =
b̃!

(b̃− n(r))!n(r)!

(ρ
b̃

)n(r)(
1− ρ

b̃

)b̃−n(r)
, ∀r ∈ L , (7)

where ρ is the average node density of the lattice, i.e. ρ =
∑
r∈L n(r)/|L|.

We drop the temporal and the spatial argument since the well-stirred system
assumes a spatially homogeneous node density distribution for each time
interval (k, k + τ). The joint probability of the set of node configurations
{η(r)}r∈N , where N = {r ∈ L|n(r) 6= 0} ⊆ L is the set of occupied nodes
of the lattice L, is:

P ({η(r)}r∈N ) =
∏
r∈N

Pbinom(n(r), ρ) . (8)

By the application of the reaction step, the node density may change
n(r) → n(r) + 1 with the transition probability p+(n(r)). Let α+ denote
the set of nodes that gain a particle, where this event is realized by the
probability:

P (α+) =
∑
{η(r)}

P (α+|{η(r)})P ({η(r)}) . (9)

Here, P (α+|{η(r)}) is the conditional probability for the transition n(r)→
n(r) + 1 from a given configuration {η(r)}r∈N . Therefore,

P (α+|{η(r)}) =
∏
r∈α+

p+(n(r))
∏

r∈(N−α+)

(
1− p+(n(r))

)
. (10)

Summing over all possible configurations {η(r)}r∈N in (9), we obtain
the following binomial distribution:

P (α+) =
|N |!

|α+|!(|N | − |α+|)!
(P+)|α+| (1− P+)|N |−|α+| , (11)

where the prefactor takes into account all the possible choices of assigning
the α+ transitions n→ n+1 to possible positions on the lattice and the |·| de-
notes the cardinality of a set. The probabilities P+ =

∑
n p

+(n)Pbinom(n, ρ)
are the averages of the transition probabilities p+(n) over the binomial dis-
tribution on the lattice L.
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Therefore, the expected value of the net change in the node density
during one time step becomes:

〈∆ρ〉MF = ρ(k + τ)− ρ(k) =
1
|N |

∑
|α+|≤|N |

α+P (α+) = P+ = F (ρ) , (12)

where F (ρ) is the mean-field growth law for a single node. Following the
definition of the automaton’s reaction rule (3), the mean-field growth term is:

F (ρ) = rρ

(
1− ρ

b̃

)
. (13)

The transition of a microscopical process to a macroscopic description
requires a temporal scaling relation between the macroscopic and microscopic
variables. We assume a small parameter ε� 1 that scales the time variable t:

t = εk . (14)

Using the Taylor expansion ρ(k+ τ) = ρ(k) + ετ∂tρ(t)|t=k and rewriting
equation (12) in continuous variables:

∂tρ =
r

ετ
ρ

(
1− ρ

b̃

)
, (15)

which is the logistic growth equation [15]. Note that 0 < ετ � 1. This means
that the ratio r/ετ < ∞ should be finite. Thus, the growth rate should be
scaled as r ∝ ετ � 1, which means that equation (15) is valid for small
growth rates. Therefore, we have shown that our growth process under the
mean-field and the well-stirred system assumptions behaves macroscopically
as the logistic equation (15).

3.2. Spatially distributed system

Now, we demonstrate how to derive a spatio-temporal mean-field approx-
imation of our growth automaton for a spatially distributed system. In this
case, we consider the space in our mean-field analysis which allows for an
average description of the single node behavior. From this average node de-
scription, we can extrapolate the macroscopic behavior of the system. To do
that we employ an appropriate spatio-temporal scaling method.

The average change of the occupation number of channel i, where
i = 1, . . . , b̃, is:

fi(r +mci, k + τ)− fi(r, k) = 〈ηi(r +mci, k + τ)− ηi(r, k)〉MF . (16)
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Using the mean-field approximation, where all spatial correlations are
neglected, and combining equations (2), (6) and (16), we obtain:

fi(r+mci, k+ τ)− fi(r, k) =
b̃∑

j=1

Ωijfj(r, k) +
b̃∑

j=1

(δij +Ωij)R̄i(r, k) , (17)

where the matrix Ωij = 1/b̃− δij is the transition matrix of the underlying
shuffling process. Moreover, we assume that the mean-field growth term is
independent of the particle direction, i.e. R̄i = F (ρ)/b̃, where F (ρ) is the
mean-field growth term for a single node. The mean-field growth term is:

R̄i(r, k) = rfi(r, k)(1− fi(r, k)) . (18)

In order to derive the macroscopic dynamics, we use the Chapman–
Enskog methodology, described in [4]. In the following, we apply the para-
bolic (or diffusive) spatio-temporal scaling

x = εr and t = ε2k , (19)

where (x, t) are the continuous variables as ε → 0. The parabolic scaling
provides the long-term macroscopic dynamics of a diffusion-based process.
The small parameter ε is defined as the ratio of the microscopic mean free
path, i.e. the microscopic jump m of a particle within a microscopic time
step τ , and the macroscopic length scale, i.e. the length of the domain L:

ε =
m

L
� 1 . (20)

Now, we suppose an asymptotic solution of the single particle distribu-
tion fi in terms of the parameter ε:

fi = f
(0)
i + εf

(1)
i + ε2f

(2)
i +O(ε3) . (21)

An important aspect is the scaling of the growth term. We assume that
particle proliferation occurs at a much slower time scale than particle motion.
Thus the growth process can be considered as a perturbation of the particle
transport. That means that the main process is particle diffusion (as it is
also shown below) and the growth rate should be scaled according to the
macroscopic time scaling, i.e.:

R̄i → ε2R̃i . (22)

The above relation implies that the macroscopic growth rate scales r̃m = ε2r,
where the microscopic rate is r ∝ O(1). Therefore, our approach is valid
only for very low growth rates.
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Moreover, the Chapman–Enskog procedure allows us to derive an asymp-
totic solution for fi(r, k) (see Appendix), i.e.

fi(r, k) =
ρ(r, k)
b̃
− εm

b̃
(ci · ∇)ρ(r, k) + ε2

m2

2b̃2

[
b̃(ci · ∇)2 − 2∇2

]
ρ(r, k) .

(23)
Intuitively, we understand the above equation as a perturbation of the ho-
mogeneous equilibrium solution ρ(r, k)/b̃ scaled by the parameter ε.

Collecting the equalO(ε2) terms, we can formally derive a spatio-temporal
mean-field macroscopic approximation (see Appendix):

∂tρ =
m2

b̃τ
∇2ρ+

1
τ
F (ρ) , (24)

where F (ρ) is the macroscopic growth law, i.e.

F (ρ) = r̃mρ

(
1− ρ

b̃

)
. (25)

By non-dimensionalizing the above equation, we can readily obtain the
widely used Fisher–Kolmogorov (FK) equation [13].

4. Mean-field approximations and macroscopic behavior

In the previous section, we presented two types of mean-field approxi-
mations of LGCA. The question is which approach is more appropriate to
describe the automaton’s macroscopic behavior. In this section, we provide
a comparison of the two mean-field approaches and try to identify their lim-
itations. In particular, we use the well-stirred and the spatially distributed
mean-field approximations to gain insight into: (i) the spatio-temporal pat-
tern formation of the LGCA and (ii) the behavior of important macroscopic
observables, such as total number of particles (ρ̄(t)) and the per capita growth
rate (γ).

Based on the mean-field approximation of the well-stirred system, we
have derived an ODE (15) that allows us to calculate the net change in
the node density for any given time. The total number of particles in the
system is

ρ̄(t) =
∑
r∈L

ρ(t) = |L|ρ(t) .

Thus, using equation (15), the time evolution of the total number of particles
in the system is given by the equation

ρ̄(t) =
C

1 +
(
C
ρ̄0
− 1
)
e−

r
ετ
t
, (26)
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where ρ̄0 is the initial total number of particles in the system and C = b̃|L|
is the total capacity of the lattice L. The per capita growth rate is defined
as the average number of offsprings per individual for a given time, i.e.

γ =
∆ρ̄(t)
ρ̄(t)

. (27)

The total number of produced particles is

∆ρ̄(t) =
dρ̄(t)
dt

= rρ̄

(
1− ρ̄

b̃

)
.

Therefore, the per capita growth rate for the well-stirred system is:

γtMF = r

(
1− ρ̄

b̃

)
. (28)

The well-stirred MF approximation is inappropriate for the analysis of
the spatio-temporal pattern formation, since space is not considered in equa-
tion (26).

Now we demonstrate how the macroscopic description under the assump-
tion of finite diffusion strength (25) allows for an analysis of the spatio-
temporal pattern formation in the growth LGCA. The pattern evolving in
simulations from a localized initial occupation is an isotropically growing disc
(Fig. 4). The isotropy of the system becomes apparent in the Chapman–
Enskog expansion, in particular by comparing the mean fluxes of particles
along x–y directions and calculating the total mean flux [10], i.e.:

|〈Jx+〉 − 〈Jy+〉| = |c1f1 − c2f2| = 0 ∧ 〈J〉 =
b̃∑
i=1

cifi = 0 . (29)
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Fig. 4. Typical simulations of the spatio-temporal evolution of the LGCA growth
process starting from a localized initial occupation. The three pictures show sim-
ulation snapshots for subsequent time steps. The colors indicate the node density.
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Furthermore, simulations indicate a moving front along which the occu-
pancy of the initially empty nodes is increasing from zero particles to the
maximum capacity b̃. This behavior is predicted by the FK equation (24),
which is known to produce a front where the stable phase (ρ(x, t) = b̃)
propagates towards the unstable one (ρ(x, t) = 0).

In order to calculate the total number of particles and the per capita
growth rate, we assume that the system evolves for asymptotically long times
and the initial front is sufficiently steep. In this case the speed of the front

relaxes to its asymptotic value c∗ = cmin = 2
√
m2/b̃r [13]. Additionally, the

above assumptions allow us to consider that the resulting front is extremely
steep (sharp interface between the stable and the unstable phase).

Now, we can calculate the total number of particles. Using the relation,
ρ̄(t) = b̃πR(t)2, where the radius grows as R(t) = c∗t, the total number of
particles is:

ρ̄(t) = 4πm2rt2 . (30)

The per capita growth rate is given by the relation γ = ∆ρ̄(t)/ρ̄(t), where
∆ρ̄(t) = dρ̄(t)/dt = 8πm2rt is the change of ρ̄(t). Then, it follows that

γspMF ∼
1√
ρ̄(t)

. (31)
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Fig. 5. Evolution of the per capita growth γ as a function of the total popula-
tion density ρ̄. The individual growth rate γ derived from the LGCA simulations
decreases rapidly for increasing population densities. The behavior of γ can be
fitted by a curve ρ̄−1/2, as it is calculated in our spatio-temporal MF analysis (31).
The temporal MF (28) completely fails to follow the actual LGCA dynamics. The
log–log plot (right figure) allows to better distinguish the better the fit and the
simulation curves, especially for low ρ̄.
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In Fig. 5, we show the behavior of the per capita growth rate of both
mean-field approximations in comparison with actual LGCA simulation re-
sults. We observe that γtMF fails to match exactly the per capita growth
of the simulations. The per capita growth γspMF, derived from the spatio-
temporal MF, offers a better insight into the actual growth dynamics, since
it recovers qualitatively the scaling (31) of the per capita growth rate derived
from simulations. However, the γspMF does not agree quantitatively with the
actual per capita growth. In the next section, we discuss this disagreement.

5. Discussion

A recent review [2] of a book on cellular automaton models of biological
pattern formation [5] has questioned the potential of a mean-field analysis of
CA in gaining insight into the automaton’s spatio-temporal behavior. This
objection motivated us to present the applications of the mean-field analysis
to a stochastic growth process, formulated in terms of a LGCA model. In
particular, we have analyzed the stochastic LGCA model under the mean-
field assumption in the cases of a well-stirred and a spatially distributed
system, respectively. Then we have derived the corresponding macroscopic
deterministic differential equations and we used them to gain insight into
the spatio-temporal behavior of the underlying growth process. In contrast
to the well-stirred assumption, the spatially distributed assumption leads
to a satisfactory description of the system’s spatial pattern formation and
recovers the scaling laws of important macroscopic measures, such as particle
number and per capita growth rate.

Altogether, the derived spatio-temporal mean-field description character-
izes the stochastic growth process. However, the approximation fails to pro-
vide exact quantitative predictions of those properties which rely on higher
order spatial correlations. This is due to the nature of the mean-field approx-
imation which neglects spatial correlations, together with the sharp interface
assumption. The quantitative predictions of the analytical theory could be
improved by the exact calculation of the invasive front or the extension of
the mean-field approximation [9]. Both topics are challenging research fields
but their discussion is beyond the scope of this paper.
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Appendix

The Chapman–Enskog method for LGCA is described in detail in [4].
Introducing the spatio-temporal scaling relation Eq. (19) and replacing the
first part of equation (17) by its Taylor expansion, we obtain:

fi(r+mci , k+τ)−fi(r, k)=(
ε2τ∂t+ε4

τ2

2
∂tt+εm(ci ·∇)+ε2

m2

2
(ci ·∇)2 + ε3τm∂t(ci · ∇)

)
fi(r, k) . (32)

Furthermore, we assume an asymptotic solution of the single particle
distribution in the form of (23), i.e.

fi(r, k) =
n∑
l=0

εlf
(l)
i (r, k) +O(n+ 1) . (33)

Moreover, we consider that the particle growth is scaled as:

R̄i → ε2R̃i . (34)

The macroscopic quantities of interest are the particle densities ρ =∑
i f

(0)
i , with the assumption

∑
i f

(l)
i = 0, if l ≥ 1.

The next step is to insert Eqs. (22) and (32) into (17) and to collect the
terms of equal ε order:

O(ε0) :
∑
j

Ωijf
(0)
j = 0 , (35)

O(ε1) : m(ci · ∇)f (0)
j =

∑
j

Ωijf
(1)
j , (36)

O(ε2) : τ∂tf
(0)
i +m(ci ·∇)f (1)

i +
m2

2
(ci ·∇)2f

(0)
i =

∑
j

Ωijf
(2)
j +R̃i . (37)
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The solutions of the above equations (35), (36), (37) are based on the
properties of the transition matrix Ω [4] and the results are:

f
(0)
j =

ρ

b̃
, (38)

f
(1)
j = −m

b̃
(ci · ∇)ρ . (39)

To obtain a macroscopic equation, we sum equation (37) over i; it follows:

τ∂t
∑
i

f
(0)
i +m

∑
i

(ci·∇)f (1)
i +

m2

2

∑
i

(ci·∇)2f
(0)
i =

∑
ij

Ωijf
(2)
j +

∑
i

R̃i . (40)

Performing the above summation (using the property of the transition
matrix

∑
ij Ωij = 0 and the property of the lattice tensor2

∑
i ciαciβ =

dδαβ , where d is the dimension of the system), yields the following reaction-
diffusion equation (24):

∂tρ =
m2

τ b̃
∇2ρ+

1
τ
F (ρ) , (41)

where F (ρ) is the macroscopic growth law.
From Eqs. (24) and (37), we can obtain an expression for f (2)

i :

f
(2)
i (r, k) =

m2

2b̃2

[
b̃(ci · ∇)2 − 2∇2

]
ρ(r, k) . (42)

Thus the asymptotic solution of the single particle distribution is:

fi(r, k) =
ρ(r, k)
b̃
− εm

b̃
(ci · ∇)ρ(r, k)

+ ε2
m2

2b̃2

[
b̃(ci · ∇)2 − 2∇2

]
ρ(r, k) . (43)

2 The automaton’s spatial and velocity discretizations are related to the definition of the
lattice tensor. The velocity vectors ci yield an orthogonal basis for the construction
of the lattice tensors. The lattice tensors contain all the isotropy and symmetry
properties of the automaton’s space L [14].
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List of symbols

Symbol Explanation

L ⊂ Zd d-dimensional regular lattice
| · | cardinality of a set

Li, i = 1, . . . , d length of the lattice along ith dimension
(r, k) ∈ N2 discrete spatio-temporal variables

ci ∈ Zd, i = 1, . . . , b velocity channel vector
β ∈ N0 = N ∪ {0} number of rest channels

b coordination number
b̃ = b+ β total number of channels

η(r) ∈ {0, 1}b̃ node configuration
ηi(r) ∈ {0, 1}, i = 1, . . . , b̃ occupation number
n(r, k) ∈ {0, . . . , b̃} node density

P (·) probability measure
m ∈ N single particle speed
τ ∈ N automaton’s time step

P propagation operator
O reorientation operator
Ω transition matrix of LBE

ρ(r, k) ∈ [0, b̃] mean node density
(x, t) ∈ R2 × R+ continuous spatio-temporal variables

ε� 1 scaling parameter
R growth operator

J(η(r, k)) node flux
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