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In the first part of the paper we discuss the role of the two-body
nucleon–nucleon correlations on signatures of the heavy-ion collisions which
are a priori expected to be sensitive to these effects. We find that while the
fluctuations of the number of produced particles are indeed affected, other
quantities (v2 fluctuations, size fluctuations) are insensitive to the presence
of the NN correlations in the nucleon distributions. In the second part we
show that the fluctuations of the transverse size of the initial source cause,
after a suitable hydrodynamic evolution, fluctuations of the transverse flow
velocity at hadronic freeze-out. This in turn yields the event-by-event fluc-
tuations of the transverse momentum of the produced particles, 〈pT〉. Our
results demonstrate that practically all of the observed event-by-event 〈pT〉
fluctuations may be explained this way.

PACS numbers: 25.75.–q, 25.75.Dw, 25.75.Ld

1. Introduction

This paper consists of two independent parts, both related to novel as-
pects of the correlations and event-by-event fluctuations present in the com-
monly used Glauber treatment of the early phase of the ultra-relativistic
heavy-ion collisions.

∗ Talk presented by W. Broniowski at the EMMI Workshop and XXVI Max Born
Symposium “Three Days of Strong Interactions”, Wrocław, Poland, July 9–11, 2009.
Research supported in part by the Polish Ministry of Science and Higher Education,
grants N202 034 32/0918 and N202 249235.
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2. NN correlations

The standard way of generating the nucleon distribution in a nucleus for
studies of ultra-relativistic heavy-ion collisions is to independently populate
the nucleus according to a one-body density in the form of the Woods–Saxon
function. Thus, the typically used procedure completely neglects the NN
correlations (apart for the poor man’s implementation of the hard-core re-
pulsion, precluding the centers of the nucleons to be closer than a certain
distance), known to be crucial in a nuclear system. Recently, however, Alvi-
oli, Drescher, and Strikman [1] published nuclear distributions for several
nuclei which fully account for the central two-body NN correlations, thus
accomplishing the long-awaited task [2, 3].

In this work we use the distributions from [1]1 in GLISSANDO [4] to in-
vestigate within the Glauber treatment the role of the NN correlations
on several signatures of heavy-ion collisions. We use the wounded-nucleon
model [5], however we have checked that the results in other variants [6] of
the Glauber approach are qualitatively similar. Such more detailed studies
will be published elsewhere. We recall that the nucleons from the two nuclei
get wounded when their centers pass closer to each other than the distance
d =

√
σNN/π, where σNN is the inelastic nucleon–nucleon cross-section.

For the highest SPS, RHIC, and LHC energies it is equal to 32, 42, and
63 mb, respectively.

Our results for the 208Pb–208Pb collisions are shown in Fig. 1. The nota-
tion is as follows: NW — the total (projectile+target) number of wounded
nucleons, NPROJ

P — the number of wounded nucleons in the projectile, and
N = NW/2 denotes the number of the wounded-nucleon pairs. We note that
except for the fluctuations of the total number of the wounded-nucleon pairs
plotted as a function of the wounded nucleons in the projectile (the NA49
setup [7], where the VETO calorimeter essentially measures NPROJ

P ), other
investigated quantities are not affected by the inclusion of the NN corre-
lations. While for the one-body observables from the left-side panels this
is expected, as two-body correlations by definition do not affect one-body
observables, the weakness of the effect in the fluctuation of the eccentricities
ε and ε∗ [6] is somewhat surprising. Our conclusions for ε agree with similar
observations drawn in [8].

We conclude that apart for the multiplicity fluctuations, the neglect of
the NN correlations in numerous previous studies of relativistic heavy-ion
collisions was innocuous. In particular, the previous studies of v2 and its
fluctuations [9–16] are not affected by the NN correlations in the nucleon
distributions.

1 Publicly available at http://www.phys.psu.edu/∼malvioli/eventgenerator
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Fig. 1. Various quantities computed for the 208Pb–208Pb collisions without (solid
line) and with the NN correlations (dashed line) in the wounded-nucleon model
for σNN = 32 mb. The top panels show the mean total (projectile+target) number
of the wounded-nucleon pairs and its scaled variance as a function of the number
of the wounded nucleons in the projectile. The middle and bottom panels show
the fixed-axes (standard) and variable-axes (participant) eccentricities [6] and their
scaled standard deviation as functions of the total number of wounded nucleons.
The horizontal line in the bottom-right panel indicates the limit

√
4/π − 1 ' 0.52

derived in [6].



516 W. Broniowski et al.

3. pT fluctuations

The pT fluctuations in relativistic heavy-ion collisions have been a sub-
ject of intense studies [17–32]. Despite numerous theoretical efforts, up to
now the magnitude and centrality dependence of these correlations has not
been convincingly understood. In this part of the paper we present a very
simple mechanism, capable of describing very well the data. The approach
is described in a greater detail in [33]. It generates the event-by-event
pT-fluctuations based on the fluctuations of the initial size of the formed
system and its subsequent hydrodynamic evolution followed by statistical
hadronization (we use the single-freeze-out variant from [34–37]). Due to its
statistical nature, the Glauber approach leads to an initial configuration of
the wounded nucleons (or binary collisions) which are randomly distributed.
This promptly yields the fluctuations of the initial transverse size. In short,
this is the scheme: smaller initial size has more compression, leading to
faster hydrodynamic expansion, larger flow at freeze-out, and, finally, larger
transverse momenta, and vice versa. We note that the effects of inhomo-
geneities in the initial condition for some observables have been studied
in [38]. The event-by-event fluctuations of the initial shape have been stud-
ied in detail for its elliptic component, where they cause enhancement of the
elliptic flow [6,9–14,39–42].

We define the average transverse size (in the wounded nucleon model for
the simplicity of notation) as

〈r〉 =
NW∑
i=1

√
x2

i + y2
i , (1)

where xi and yi are coordinates of a wounded nucleon in the transverse plane.
The original positions of nucleons in each nucleus are randomly generated
from an appropriate Woods–Saxon distribution. The notation 〈〈.〉〉 indicates
averaging over the events. In order to focus on the relative size of the effect
we use the scaled standard deviation, defined for a fixed value of NW as
σ(〈r〉)/〈〈r〉〉.

The results of our Monte Carlo simulations for 197Au–197Au performed
with GLISSANDO [4] in the wounded nucleon model are shown in Fig. 2. The
three curves overlap, showing insensitivity to the value of σNN in the con-
sidered range. We note that the scaled standard deviation of 〈r〉 is about
2–3% for central collisions, and grows towards the peripheral collisions ap-
proximately as 1/

√
NW.

Qualitatively very similar results are obtained for other variants, in par-
ticular for the mixed model and models with superimposed distribution of
particles produced by each wounded nucleon [4]. We have also checked
that using a Gaussian wounding profile σNN (b) [43] for the NN collision,
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Fig. 2. Event-by-event scaled standard deviation of the size parameter 〈r〉, evalu-
ated at fixed values of the number of wounded nucleons, NW, for several values of
σNN in 197Au–197Au collisions.

rather than the sharp wounding distance criterion applied here, leads to in-
distinguishable curves. Also, the use of the nucleon distributions including
realistically the NN correlations, as described in the first part of this paper,
leads to practically no difference. In other words, the behavior displayed in
Fig. 2 is robust, reflecting the random nature of the Glauber approach.

The next step, crucial in converting the size fluctuation into the observ-
able momentum fluctuations, is hydrodynamics. We use the hydrodynamic
approach of [44], followed with statistical hadronization as implemented in
THERMINATOR [45]. The goal is to find how exactly the size fluctuations get
converted into the pT fluctuations. Rather than doing tedious event-by-event
hydrodynamic calculations, it is enough to see how much the results change
when the size of the initial profile is scaled. The procedure presented below
works, since the studied fluctuations follow from the initial conditions, while
the differential equations of hydrodynamics are deterministic.

The event-by-event distribution of 〈r〉 is approximately Gaussian,

f(〈r〉) ∼ exp
(
−(〈r〉 − 〈〈r〉〉)2

2σ2(〈r〉)

)
. (2)

Suppose first that we run the simulations at a fixed value of 〈r〉 and as the
result obtain a certain average transverse momentum, p̄T. Because of the
deterministic nature of hydrodynamics, p̄T is a (very complicated) function
of 〈r〉. Its value fluctuates because of the fluctuations of the initial size.
Now, we can expand near the central value:

p̄T − 〈〈pT〉〉 =
dp̄T

d〈r〉

∣∣∣∣
〈r〉=〈〈r〉〉

(〈r〉 − 〈〈r〉〉) + . . . (3)
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Substituting (3) into (2) and comparing to (6) we get the key formula

σ2
dyn = σ2(〈r〉)

(
dp̄T

d〈r〉

∣∣∣∣
〈r〉=〈〈r〉〉

)2

, (4)

or, for the scaled standard deviation,

σdyn

〈〈pT〉〉
= −σ(〈r〉)

〈〈r〉〉
〈〈r〉〉
〈〈pT〉〉

dp̄T

d〈r〉

∣∣∣∣
〈r〉=〈〈r〉〉

. (5)

The full statistical distribution f(〈pT〉) is a folding of the statistical dis-
tribution of 〈pT〉 at a fixed initial size, centered around p̄T, with the distri-
bution of p̄T centered around 〈〈pT〉〉. In the central regions both are close
to Gaussian distributions, hence we have, to a very good approximation,

f(〈pT〉) ∼
∫
d2p̄T exp

(
−(〈pT〉 − p̄T)2

2σ2
stat

)
exp

(
−(p̄T − 〈〈pT〉〉)2

2σ2
dyn

)
. (6)

Carrying out the p̄T integration yields the Gaussian event-by-event distri-
bution of 〈pT〉 centered around 〈〈pT〉〉 with the width parameter satisfying
σ2 = σ2

stat + σ2
dyn. Statistical procedures used in experimental analyses of

fluctuations are designed in such a way that the dynamical component of
the fluctuations is extracted. In our case, where the source of fluctuations
is in the initial condition, we find the simple formula (4), which may be
compared to the experimental σdyn.

The derivative in Eqs. (4), (5) can be computed numerically without
difficulty by running just two simulations at each centrality. We perform
calculations for initial profiles which are squeezed or stretched by 5%. In
addition to squeezing or stretching, we also simultaneously adjust the cen-
tral temperature in such a way, that the energy contained in the profile is
preserved. This is natural, as the total energy deposited in the transverse
plane should be the same (up to possible additional fluctuations neglected
here) for a given number of elementary collisions. Thus, we include in some
sense also the temperature fluctuations discussed, e.g., in [46].

Our final result is shown in Fig. 3, where we compare the model points
to the data from the STAR [30] and PHENIX [29] Collaborations. The
experimental cuts of the STAR detector have been used in our model sim-
ulations, 0.2 GeV < pT < 2 GeV. Looking at Fig. 3, we note a strikingly
good agreement between our calculation and the experiment, in particular
for the wounded nucleon model. The mixed model, admittedly more realistic
than the wounded-nucleon model, overshoots the data by about 20%. This
suggests that the coefficient in (5) is somewhat too large. Its value incorpo-
rates all the dynamics of the system (the choice of the initial profile, details
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Fig. 3. Scaled dynamical transverse-momentum fluctuations, σdyn/〈〈pT〉〉 (for
σNN = 42 mb in 197Au–197Au collisions) compared to the experimental data from
STAR [30] and PHENIX [29]. The lower (upper) crosses indicate our results for
the wounded nucleon model (mixed model). The STAR experimental data range
from

√
sNN = 20 GeV (triangles), through 130 GeV (squares), 62 GeV (diamonds),

to 200 GeV (dots). The PHENIX data (dots with large systematic error bars) are
for 200 GeV.

of hydrodynamics, the statistical hadronization), hence modifying any of
these components, e.g. including viscosity effects, will lead to changes. We
note a proper dependence on centrality, with an approximate dependence
σdyn(〈pT〉)/〈〈pT〉〉 ∼ 1/

√
NW. Since the results of Fig. 2 very weakly de-

pend on σNN , to the extent that the hydrodynamic “pushing” is similar
at various energies, our results should also weakly depend on the incident
energy, which is a desired experimental feature in view of the STAR results.

Finally, we note that the result (5) bears similarity to the formula derived
by Ollitrault [47], where

σdyn

〈〈pT〉〉
=
P

ε

σ(〈s〉)
〈〈s〉〉

=
2P
ε

σ(〈r〉)
〈〈r〉〉

, (7)

with s denoting the entropy density, P — the pressure, and ε — the energy
density. The second equality follows from the assumption that the total
entropy deposited in the transverse plane depends only on the number of
collisions and not on the size, hence 〈s〉 ∼ 1/〈r〉2 [48]. The coefficient P/ε
in Eq. (7) is to be understood in the averaged sense over space and time.
Numerically, we find

〈〈r〉〉/〈〈pT〉〉 dp̄T/d〈r〉|〈r〉=〈〈r〉〉 ∼ −0.4 , (8)
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independent of centrality. This yields the average P/ε about 0.2, which is
in the expected ball park of realistic equations of state [49,50], see Fig. 42.
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Fig. 4. Estimated average value of P/ε based on Eq. (8) (band), compared to the
curve from the equation of state from [49,50].

4. Conclusion

Here are our main conclusions:

1. The inclusion of the two-body NN correlations is important for the
fluctuations of the number of produced particles. Other observables,
such as the shape eccentricity fluctuations, carried over to the v2 fluc-
tuations, are not affected.

2. We reproduce the dynamical event-by-event pT fluctuations, as mea-
sured at RHIC by STAR and PHENIX, with the simple mechanism
based on fluctuations of the initial size, which are then carried over
by hydrodynamics to the fluctuations of the transverse flow velocity,
and consequently to the transverse momentum of the produced par-
ticles. The hydrodynamic “push” is crucial in this scheme. Other
possible sources of fluctuations, such as the formation of clusters at
freeze-out [51–54], minijets [29, 55], or correlations originating from
the elementary NN collisions in the corona in the core-corona pic-
ture [56–59], should all be considered at the “background” of the fluc-
tuations described in this paper.

3. The hydrodynamic push is related to the equation of state, in particu-
lar to the ratio P/ε averaged over space and time. Thus, interestingly,
the pT correlations carry, via their relation to the size fluctuations,
information on the stiffness of the medium.

2 Presented by M. Chojnacki at the V Workshop on Particle Correlations and Fem-
toscopy, CERN, October 14–17, 2009.
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