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The Casimir effect is usually interpreted as due to the modification of
the zero point energy of QED when two perfectly conducting plates are
put very close to each other, and as a proof of the “reality” of this zero
point energy. The Dark Energy, necessary to explain the acceleration of
the expansion of the Universe is sometimes viewed as another proof of the
same reality. The usual interpretation of the Casimir effect is however
challenged by some authors who rather consider it as a “giant” van der
Waals effect. All these aspects are shortly reviewed.

PACS numbers: 11.10.–z, 11.10.Ef, 34.35.+a, 95.36.+x

1. Introduction

The organizers of the XXVI Max Born Symposium have kindly invited
me to present a lecture on an out-of-the-main-stream topic of my choice.
I decided to make a short review on the Casimir effect (CE). The reason
is that I discovered recently, while preparing a course on “Astroparticles”
in my University, that the conventional wisdom about the CE is seriously
challenged by many authors. In short (more details are given below), the
CE is a quantum force between two uncharged conducting plates. It is
usually considered as originating from the differences of the QED ground
state energies when boundary conditions are modified. The ground state
energy is not directly measurable, but the CE, which corresponds to a mere
change of this energy when boundary conditions are modified, is generally
considered as a proof of the physical reality of this ground state energy. In
the recent years, this interpretation has been revisited and some authors even
claim that the CE cannot really test the ground state energy. On the other
hand, the field is booming. The CE is an everyday feature in nanotechnology.
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Furthermore, some theorists are trying to calculate the effect of modifying
boundary conditions on the ground state energy of quantum field theories
and some others are interested in the formulation of quantum field theory
without reference to the ground state energy. From this point of view, the CE
may not completely appear as an odd topic in this Symposium since many
contributors spoke about the properties of the QCD vacuua. I will shortly
review some of these aspects, occasionally putting them into an historical
perspective.

2. The vacuum energy

Whether the vacuum is gifted with physical properties is an issue that
has occupied physicists since the ancient Greeks. Einstein himself [1], after
having deprived the Lorentz ether of its physical properties, argued for the
existence of an ether endowed with physical qualities. Later, in the canonical
formulation of quantum field theory, the vacuum, i.e. the ground state of
a free quantum field, acquired physical properties. For instance, it is a polar-
isable medium. For our purpose here, it has also an infinite energy density,
due to the so-called zero-point motion (or quantum vacuum fluctuations) of
the field. Since this energy is infinite and cannot be tapped, it was rather
considered as unphysical and forgotten. The theoretical prediction of the
CE did not really modify the attitude of the physicists. But in the recent
years, the situation has evolved, due to the realisation of precise measure-
ments of the Casimir force and to the advent of the concept of dark energy
in cosmology, on which I will elaborate a bit.

It is now more and more evident from the Hubble plot at large red
shifts [2] and from fluctuations of the Cosmic Microwave Background [3]
that the Universe is expanding at an accelerating rate, under the presence
of a Dark Energy (DE) which pervades all the Universe and which seems
to be a property of the vacuum (not of the matter nor of the radiation).
This dark energy is characterized by a negative pressure and a constant and
uniform energy density ΩDE, whose value can be extracted from observation.
It is equal to

ΩDE ' 3/4Ωc ' 4 GeV/fm3 , (1)

where Ωc is the critical energy density, which is about the entire present
energy density of the Universe. The dark energy has the same status as
the cosmological constant Λ introduced for a while by Einstein in order
to manage a static Universe. Indeed, ΩDE and Λ are interrelated. The
introduction of DE may have appeared as an ad hoc procedure and some
explanations of its origin have been searched for. The most promising was
in fact the zero-point energy of quantum fields. Even if this energy cannot
be tapped and measured by ordinary means, it gravitates as all other forms



The Casimir Effect 541

of energy. The first physicist to have made such a proposition seems to
be Zeldovitch [4] in 1957. Many physicists have adopted this hypothesis,
arguing that the CE is a proof of the existence of the vacuum energy. Just to
quote Perkins [5]: “That this concept [the vacuum energy] is not a figment of
the physicist’s imagination was already demonstrated many years ago, when
Casimir predicted that by modifying boundary conditions on the vacuum
state, the change of the vacuum energy would lead to a measurable force,
subsequently detected and measured by . . . ”

It should be mentioned right away that the identification of the zero-
point energy of quantum fields with DE poses serious problems. Indeed for
a free bosonic field, the zero-point energy density is the sum over the normal
modes of half a quantum of energy. Since the number of modes is infinite,
it is already necessary to introduce a cut. The energy density (for photon
field) then writes:

ε =
1
2

∑
~ω =

1
(2π)3

k=kcut∫
d3~k~kc =

1
8π2

~ ck4
cut . (2)

Since one is dealing with gravitational properties, it seems natural to
take kcut roughly equal to the inverse of Planck length. A rapid calcula-
tion yields ε ' 10121 GeV/fm−3, absurdly too large. Of course, one may
find smaller cut-offs, but the difference with ΩDE is so enormous that it
looks hopeless. In addition, there are other fields (and also plenty of con-
densates) in the particle standard model. Presently, it is fair to say that
there is no clear guide to make a meaningful identification of ΩDE with
zero-point energies.

3. The Casimir effect as a manifestation of zero-point energy

Let us assume two parallel perfectly conducting plates, separated by
a distance d (see Fig. 1). For simplicity, let us consider that they are perpen-
dicular to the z direction and infinitely long in x and y directions. Between
the plates the normal modes of the free electromagnetic field are not the
same as in free space. In the latter case, the modes are characterized by a
wave vector ~k of any value. In the former case, the tangential component
of the electric field and the normal component of the magnetic field have
to vanish on the plates. As a consequence, the wave vector takes discrete
values. So, the zero-point energy is changed and a force is acting on the
plates. The latter can also be understood as arising from the fact that the
pressure is not the same between the plates and outside of the plates (where
the field is the same as in free space; see Ref. [6] for a discussion of this
point, as of the effects of finiteness of real plates). I will not describe here
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Fig. 1. Schematic representation of the normal modes of the electromagnetic field.
Adapted from Ref. [8].

the normal modes (for details see Refs. [6, 7]), but it is more or less evident
that the modes with a small perpendicular component of the wave vector
(large wavelength) are meaningfully different from the free modes, whereas
those with large wave number (small wavelength) are essentially the same
in both configurations. The relevant separating parameter is 1/d.

Not surprisingly the difference of zero-point energy (per unit surface)
can be put in the form of the difference between the integral of a continuous
function and the sum of the values of the same function at integer values of
the suitably reduced wave number:

∆E
S

=
Ecav

S
− Efree

S

=
~cπ2

4d3

1
2

∞∫
0

du
√
u+

∞∑
n=1
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0

du
(
u+ n2

)1/2−
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0

dx

∞∫
0

du
(
u+x2

)1/2

 . (3)

Each term is infinite, but the final expression can be made meaningful by
introducing a regularising factor (e.g. exp(−β

√
u+ x2)). The expression

can thus be transformed by the Euler–McLaurin theorem and then depends
only on the values of the function and its derivatives at the end of the
integration domain [9]. As the regularizing parameter β goes to zero, only
one term survives. One gets:

∆E
S

= − ~cπ2

720 d3
. (4)

The Casimir force is obtained by differentiating with respect to d:

F

S
= − ~cπ2

240 d4
. (5)



The Casimir Effect 543

It is a remarkable result: it is a truly quantum attractive force (signalled
by ~) and it is independent of the nature of the plates. No surprise that the
CE is considered as a genuine property of the vacuum.

The Casimir force is a very tiny force for ordinary values of the separation
distance. For d = 1µm, F/S ≈ 4 × 10−4 N/m2. Of course, since it is
inversely proportional to the fourth power of separation distance, it can
be sizeable for much smaller values of d. It is not a surprise that it took
a long time to verify Eq. (5) experimentally. After a few unconclusive or
partially conclusive attempts [10–12], Eq. (5) was verified to a accuracy of
a few percent by Lamoreaux [13] in 1997 and of one percent by Ederth [14]
in 2000.

Casimir force is a reality that is encountered daily in nanotechnology
and in particular in the so-called MEMS (Microelectromechanical Systems)
technology. For a review, see Ref. [15].

4. Dependence upon the fine structure constant

Expression (4) looks universal, independent of the properties of matter.
Yet it is surprising that it does not depend upon the fine structure con-
stant as all other elementary electromagnetic effects. In fact, there is some
dependence, which is hidden by the implicit hypothesis made above of a
perfect conductor (through the boundary conditions on the plates). Simple
considerations will help to understand the role of coupling of the field to the
plates. Here I closely follow Ref. [16].

Real conductors are roughly characterized by two important parameters:
the plasma frequency ωpl and the skin depth δ (or the conductivity σ the
two quantities being related by δ−2 = 2πω|σ|/c). There is basically no
propagation of electromagnetic waves inside the plasma for frequencies lower
than ωpl and the skin depth gives the penetration of incident waves into
the conductor. Ideal conductors correspond to infinite ωpl and δ. It is
very convenient to use the Drude model to exhibit the effect of these two
parameters. In spite of its simplicity, this model is able to produce the
important features. In the Drude model, the conducting electrons are free
except that they are subject to a friction force of the simplest type ~f = −γ~v.
It is a simple excercise to find the expressions for ωpl and δ (n is the electron
density):

ωpl =

√
4πne2

me
, δ−2 =

1
2

ωω2
pl√

γ2 + ω2
. (6)

The limit of a perfect conductor requires that the typical frequencies are
much smaller than the plasma frequency. In the case of the CE, the typical
frequencies are smaller than or of the order of c/d. Thus the approximation
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of a perfect conductor is satisfied when c/d� ωpl, i.e. when

α� mc

4π ~nd2
. (7)

For typical cases (Cu, d = 1µm), the r.h.s. amounts to ∼ 10−6. Therefore,
the above condition is comfortably satisfied by the actual value of the fine
structure constant. In fact, Casimir’s result is the α → ∞ limit of the
effect. The exact result contains corrections involving negative powers of
the fine structure constant. This can be viewed naively from the following
considerations. Due to the meaning of the skin depth, the effective distance
between the two plates is roughly d+ 2δ. Then expression (4) becomes

∆E
S
≈ − ~cπ2

720(d+ 2δ)3
= − ~cπ2

720 d3

(
1− 6

δ

d
+ . . .

)
. (8)

The correction appears indeed as negative powers of α.
It is also interesting to discuss the α→ 0 limit. The latter is a bit tricky.

One has to realize that, in this limit, the Bohr radius aB = ~2/(mee
2) be-

comes infinite. The atoms are much larger than in the real world. Actually,
n scales as α3, ωpl scales like α2 and δ scales as 1/α. Thus δ becomes very
large, the plates are transparent to the radiation and the CE goes away. As
all other electromagnetic effects, the CE vanishes when α → 0. The only
distinctive feature is that it has a finite contribution when α→∞ and that
the assymptotic behaviour is largely reached for the actual value of α.

5. The Casimir effect as a van der Waals force
between macroscopic neutral objects

5.1. The London treatment of the van der Waals force

In Section 4, it is shown that the CE disappears when the fine structure
constant, which measures the coupling between radiation and matter, van-
ishes. This strongly suggests that the CE is not a property of the vacuum
and can be viewed as the interaction between the atoms of the two plates
mediated by the electromagnetic field. There is another quantum force of
this kind, the van der Waals (vdW) force between atoms or molecules. We
argue below that the CE can be viewed as a vdW effect between two “gigan-
tic molecules”. It is of some interest to put the discussion in an historical
perspective.

The first quantum calculation of the vdW interaction has been done
by London [17] in 1937. Let us assume two spherical atoms separated by
a distance r. The interaction energy between the two atoms, due to the
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mutual Coulomb interaction, is given in second order perturbation theory
(in α and Rat/r, Rat being the radius of the atoms) by:

∆E(2) = −e
4

r6

∑
k 6=0

∑
l 6=0

| a1
k0 |2| a2

l0 |2

E1
k − E1

0 + E2
l − E2

0

, (9)

where the superscripts 1 and 2 refer to the respective atoms and where
the quantities ak0 = 〈k |

∑
zi | 0〉 are the matrix elements of the dipole

operator between the excited state | k〉 and the ground state | 0〉. Quantum
mechanically, the atoms are spherical on the average only and the force arises
from the fluctuations of the electric dipoles of the atoms around zero.

5.2. The long range behaviour of the van der Waals force

When he was working at the Philips company, Casimir was approached
by two experimentalists, Verwey and Overbeek, who were studying colloidal
suspensions of tiny particles. They had cooked up a theory, based on the
vdW force, which accounted for their observations, but for very dilute sus-
pensions [18–20]. In that case, the force seems weaker than predicted. Over-
beek [19] hypothesized that this could be due to retardation effects (it takes
a finite time for the fluctuation of one atom to influence the other). He asked
Casimir whether he could calculate this effect. In a relatively short time,
Casimir and Polder [21] generalized the London approach by incorporating
the coupling of the atoms to the free radiation field, quantized in the ordi-
nary manner. Compared to Eq. (9), this leads to intermediate states where
the atom, and also the field, are excited. The calculation is technically dif-
ficult, since the system should be enclosed in a box with conducting walls
and and the dimensions of the box should be raised to infinity. The results
are remarkable. For small distances r, compared to the absolute value of all
the elements ak0, al0, the London result is recovered. For large distances,
Eq. (9) becomes

∆E(2) = −23 ~c
4πr7

α1α2 , (10)

where the αi’s are the static polarisabilities of the atom; in second order,
they are α = e2

∑
k 6=0 | ak0 |2 (Ek − E0)−1. The force indeed softens at

large r due to the 7th power and factorizes, contrarily to London’s result.

5.3. The van der Waals force between an atom and a conducting plane

For some unknown reason, in the very same paper, Casimir and Polder
calculated, by the same method, the interaction of an atom with a conduct-
ing plane. They arrived at the following results:
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∆E(2)
atom−wall = − e2

4d3

∑
k 6=0

| ak0 |2 , ∆E(2)
atom−wall = − 3~c

8πd4
α1 , (11)

for small and large distances, respectively.
Casimir was particularly amazed by the simplicity of his results, espe-

cially for large distances and wondered whether they can be trusted (after
all, the results are obtained in second order of standard perturbation theory).
At some time, he discussed the matter with Niels Bohr, who is supposed to
have simply said [22]: “Why do not you calculate the effect by evaluating
the differences of zero point energies of the electromagnetic field?”. Soon
later, Casimir succeeded in recovering his results by the method proposed
by Bohr [23]. Then he realised that the calculation is even simpler with two
plates (the normal modes are indeed much simpler). And he published the
calculation sketched in Section 2, in Ref. [24].

5.4. The Casimir force as a van der Waals force

The continuity between expressions (10), (11) (second part) and (4) is
manifest from the fact that they have been obtained by Casimir with the
same method as advocated by Bohr. But it is interesting to note that the
continuity results from the fact that the polarisability of a conducting body
is proportional to its geometrical extension and does not depend upon its
nature (a conductor can be viewed as a dielectrics of infinite dielectric con-
stant). Then it is rather easy to show that replacing a atom by a plane
removes the polarisability and changes, up to numerical factor, the depen-
dence upon the relevant distance by increasing the exponent by 3. The
continuity between expressions (9), (11) (first part) and (4) can be obtained
also by a similar limiting procedure. Replacing one of the two atoms by a
plane amounts to take e2

∑
k 6=0 | ak0 |2 divided by E1

k−E1
0 to be proportional

to the cube of the size of the system. This limit increases the exponent by 3.
Replacing the other atom by a plane yields, up to a constant, expression (4),
if one takes into account that the difference in energy scales as the inverse
of the typical distance, here d. See Ref. [7] for more details.

All these considerations point to the interpretation of the CE as a vdW
effect between gigantic molecules with perfectly conducting properties.

6. The “reality” of the quantum fluctuations of the vacuum

The arguments given in Sections 4, 5 cast a serious doubt on the inter-
pretation of the CE as a “proof” of the quantum fluctuations (zero-point
energy) of the quantum vacuum. Once again, the zero-point energy of QED
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vacuum is a purely theoretical concept. It cannot be tapped by any elec-
tromagnetic process. If it exists, it can be tested through its gravitational
properties only. As explained in Section 2, cosmological evidence is really
poor. There are many arguments for and against its “reality”. I quickly go
through some of them:

1. In standard (Hamiltonian) field quantization, the zero-point energy
comes from the normal ordering of fields in the classical Lagrangian.
There is no a priori reason for doing so. It is usually justified by
the link with quantization of 1D harmonic oscillators. It should be
mentionned that for fermion fields, the zero-point energy is negative!

2. Interaction between neutral objects gives “no more and no less evidence
of quantum fluctuations than any other one-loop effects” [16], as they
vanish as α→ 0.

3. The CE can be derived without reference to zero-point motion. For
instance, Lifshitz got the Casimir results by using the general theory
of fluctuations of the electromagnetic field [25–27]. Fluctuations of the
field arise from the coupling to quantum fluctuations of the atoms, but
there is no need to quantize the electromagnetic field.

4. Field theory can be formulated without reference to the zero-point
motion, only through Green’s functions and S-matrix elements. This
has been done for the scalar field by Schwinger [28], and for QED by
the authors of Ref. [29].

5. It should be mentioned that, alternatively, all features of QED can be
reformulated from the point of view of zero point fluctuations [22].

7. Conclusion

I have tried to explain that the CE, whose reality is testified daily in the
micro and the nano-worlds, and which is often advocated as a manifestation
of the quantum fluctuations of the vacuum, often considered a candidate
for DE, can, and perhaps, should be viewed rather as a vdW force between
gigantic conducting molecules, which, as other electromagnetic effects, dis-
appears in the weak coupling limit. It thus can hardly be taken as a property
of the quantum vacuum. Furthermore, it can be formulated without refer-
ence to zero-point energy. The reality of the vacuum energy remains an open
question. The fact that the CE can be derived with or without recourse to
the zero-point fluctuations introduces a puzzling “duality”, which may cover
some deeper truth.
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