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We investigate the chiral and the deconfinement transition within the
framework of Dyson–Schwinger equations using quenched lattice data for
the temperature dependent gluon propagator as input. We extract corre-
sponding order parameters from the Landau gauge quark propagator with
U(1)-valued boundary conditions. We study the chiral transition using the
conventional quark condensate, whereas for the deconfinement transition
we determine the dual condensate (‘dressed Polyakov loop’). In addition,
we consider an alternative order parameter for deconfinement, the dual
scalar quark dressing function. As a result we find almost the same transi-
tion temperatures for the chiral and deconfinement transitions.

PACS numbers: 12.38.Aw, 12.38.Lg, 11.10.Wx

1. Introduction

The phases of QCD are currently under intense theoretical and experi-
mental investigations. Open questions concern among others the interplay
between the confinement/deconfinement transition and the chiral transition,
e.g. the (non-)coincidence of the chiral and the deconfinement transition at
zero chemical potential [1], and the possibility of a confined chirally sym-
metric (‘quarkyonic’) phase [2]. Answers to these questions certainly require
non-perturbative approaches to QCD.

Functional methods involving the renormalization group equations [3]
and/or Dyson–Schwinger equations (DSE) [4, 5] constitute a non-pertur-
bative continuum approach to QCD. Only very recently, approaches ac-
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counting also for the deconfinement transition became available for these
methods [6–9]. These approaches allow to define order parameters for the
deconfinement transition from the quark propagator for generalized bound-
ary conditions. Originally introduced within the lattice framework [10,11] it
was adapted to functional methods in [7–9]. The quantities calculated in this
work signaling the deconfinement transition are the dual quark condensate
(or ‘dressed Polyakov loop’) and the dual scalar quark dressing function.

In the following we first recall the defining equations for the ordinary and
the dual quark condensate and scalar dressing function, then summarize the
truncation scheme used in our DSE calculations before we discuss our results
for the chiral and deconfinement phase transition.

2. Order parameters for deconfinement

Consider the full quark propagator at finite temperature given in terms
of its Dirac structure by

S(~p, ωp) = [iΓ 4 ωpC(~p, ωp) + iΓi piA(~p, ωp) +B(~p, ωp)]
−1 , (1)

with vector dressing functions A and C and scalar dressing function B.
The physical, antiperiodic boundary conditions in temporal direction lead
to ωp(nt) = (2πT )(nt + 1/2) for Matsubara frequencies. Generalizing to
temporal U(1)-valued boundary conditions ψ(~x, 1/T ) = eiϕψ(~x, 0) results
in Matsubara frequencies ωp(nt) = (2πT )(nt + ϕ/2) with boundary angle
ϕ = [0, 2π[.

From the ϕ-dependent propagator the dual quark condensate introduced
in lattice gauge theory Ref. [11]

Σ1 =

2π∫
0

dϕ

2π
e−iϕ 〈ψψ〉ϕ (2)

can be calculated. Due to its close connection to the Polyakov loop it is also
called ‘dressed Polyakov loop’, see Refs. [11,12] for more details.

The dual scalar quark dressing function introduced in Ref. [9] is the
phase-Fourier-transform of the ϕ-dependent scalar quark dressing function
evaluated at lowest Matsubara frequency and zero momentum

ΣB =

2π∫
0

dϕ

2π
e−iϕB(0, ωp(0, ϕ)) . (3)

Both quantities the dual quark condensate and the dual scalar quark dressing
function transform under center symmetry identically as the conventional
Polyakov loop and are therefore order parameters for deconfinement.
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An advantage of the ϕ-dependent quark condensate 〈ψψ〉ϕ is its direct
connection to the ordinary Polyakov loop in the limit of static quarks [11].
For vanishing bare quark mass it is well-behaved in the continuum limit
whereas at finite quark mass it is quadratically divergent and needs to be
properly regularized. Though apparently not linked to the Polyakov loop the
ϕ-dependent scalar quark dressing function B(0, ωp(0, ϕ)) has the advantage
of being a well defined quantity also in the continuum limit.

3. The Dyson–Schwinger equation for the quark propagator
at finite temperature

The Dyson–Schwinger equation for the quark propagator is displayed
diagrammatically in Fig. 1. At finite temperature T it is given by

S−1(p)=Z2S
−1
0 (p)− CFZ1fg

2T
∑
nk

∫
d3k

(2π)3
ΓµS(k)Γν(k, p)Dµν(p−k) , (4)

with p = (~p, ωp) and k = (~k, ωk) and renormalization factors Z2 and Z1f .
Here Dµν denotes the (transverse) gluon propagator in Landau gauge and
Γν the quark–gluon vertex. The bare quark propagator is given by S−1

0 (p) =
iΓ ·p+m. The Casimir factor CF = (N2

c −1)/Nc stems from the color trace;
here we only consider the gauge group SU(2). The quark dressing functions
A,B,C can be extracted from Eq. (4) by suitable projections in Dirac-space.�1 = �1 +
Fig. 1. The Dyson–Schwinger equation for the quark propagator. Filled circles
denote dressed propagators whereas the empty circle stands for the dressed quark–
gluon vertex.

In order to solve this equation we have to specify explicit expressions for
the gluon propagator and the quark–gluon vertex. At finite temperatures the
tensor structure of the gluon propagator contains two parts, one transversal
and one longitudinal to the heat bath. The propagator is then given by
(q = (~q, ωq))

Dµν(q) =
ZT(q)
q2

PT
µν(q) +

ZL(q)
q2

PL
µν(q) (5)
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with transverse and longitudinal projectors

PT
µν(q) =

(
δij −

qiqj
~q2

)
δiµδjν , PL

µν(q) = Pµν(q)− PT
µν(q) , (6)

with (i, j = 1 . . . 3). At zero temperatures Euclidean O(4)-invariance re-
quires both dressing functions to agree, i.e. ZT(q) = ZL(q) = Z(q).

The temperature dependence of the gluon propagator can be inferred
from recent lattice calculations. The results of Ref. [13] are shown in Fig. 2.
The lattice data although still with quantitative uncertainties may very
well correctly represent the qualitative temperature dependence of the gluon
propagator. We therefore use a temperature dependent (qualitative) fit to
the data as input into the DSE; this fit is also displayed in Fig. 2 (straight
lines). The fit functions are described in detail in Refs. [8, 9] and shall not
be repeated here for brevity. Note, however, that we also inherit the scale
determined on the lattice using the string tension

√
σ = 0.44 GeV [13].

Fig. 2. Quenched SU(2) lattice results [13] for the transverse dressing function
ZT(q) and the longitudinal dressing function ZL(q) of the gluon propagator together
with the fit functions [8].

For the quark–gluon vertex we employ a temperature dependent model
which is discussed in detail in [9].

4. Numerical results

In Fig. 3 we display our numerical results for the ordinary and the dual
quark condensate together with their (normalized) temperature derivatives
once evaluated for a quark mass of m = 10 MeV (fixed at T = 200 MeV
and ~µ2 = 20 GeV2) and once evaluated in the chiral limit. One clearly sees
the difference in the chiral transition: whereas at finite bare quark mass
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we encounter a crossover the transition changes into a second order phase
transition in the chiral limit. In the first case the corresponding tempera-
ture derivative shows a peak at Tc = 301(2) MeV, whereas it diverges at
Tc = 298(1) MeV in the second case. We also extracted the corresponding
transition temperatures from the chiral susceptibility

χR = m2 ∂

∂m

(
〈ψ̄ψ〉T − 〈ψ̄ψ〉T=0

)
. (7)

The results for quark mass m = 10 MeV are given in Table I.

Fig. 3. Left diagram: Temperature dependence of the dressed Polyakov loop Σ1 and
the conventional quark condensate ∆π ≡ 〈ψψ〉ϕ=π together with their derivatives
for m = 10 MeV. Right diagram: The same quantities in the chiral limit.

TABLE I

Transition temperatures for the chiral and deconfinement transition for quark mass
m = 10 MeV.

Tc TχR/T 4 TχR Tdec

301(2) 304(1) 305(1) 308(2)

The corresponding transition temperature for the deconfinement transi-
tion can be read off the dual quark condensate (or dressed Polyakov loop).
At finite quark mass and in the chiral limit we observe a distinct rise in
the dual condensate around T ≈ 300 MeV. The corresponding (normalized)
temperature derivative shows a peak at Tdec = 308(2) MeV for quark mass
m = 10MeV. In the chiral limit this peak moves to Tdec = 299(3) MeV.

In general we note that the chiral and deconfinement transition are close
together. There are a few MeV difference between the different transition
temperatures for the crossover at finite quark masses, whereas both tran-
sitions occur at the same temperature (within errors) in the chiral limit.
These findings agree with early expectations from lattice simulations [14].
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Furthermore we wish to emphasize that the present calculation, although
carried out with quenched lattice results for the gluon propagator, is in
itself not strictly quenched. This can be seen from the fact that the dressed
Polyakov loop is not strictly zero below the deconfinement transition. We
refer here to quenched calculation since the influence of the matter content
to the gauge sector is neglected.

In the left diagram of Fig. 4 we show a comparison of the dual scalar
dressing Eq. (3) with the dual condensate for m = 10 MeV. Both quantities
show a very similar temperature dependence especially the aforementioned
distinct rise around T ≈ 300 MeV. The signal is slightly stronger for the
dual scalar dressing ΣB. The temperature derivatives indicating the decon-
finement transition clearly peak at the same transition temperature.

In the plot of the right hand side of Fig. 4 the chiral condensate 〈ψ̄ψ〉ϕ=0

and the quark scalar dressing B(ϕ = 0) as functions of temperature at pe-
riodic boundary conditions are shown. For comparison both are normalized
to 1 at T = 500 MeV. Whereas 〈ψ̄ψ〉ϕ=0 is a strictly monotonic function
with temperature the scalar dressing is slightly decreasing in the tempera-
ture range between 300 and 400 MeV before the high temperature behavior
shows up. The large temperature scaling of both quantities can be extracted
analytically from Eqs. (2) and (4) as pointed out in the appendix of Ref. [9].
There it is shown that

Bϕ=0, p=0(T ) ∼
√
T , for T � Tc (8)

and consequently a quadratic rise of the condensate,

〈ψ̄ψ〉ϕ=0 ∼ T 2 , for T � Tc , (9)
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Fig. 4. Left diagram: Comparison of the temperature dependence of the corre-
sponding dual scalar quark dressing and the dual condensate for m = 10 MeV.
Right diagram: Temperature dependence of the chiral quark condensate ∆ϕ ≡
〈ψ̄ψ〉ϕ and the scalar dressing function Bϕ at periodic boundary conditions ϕ = 0.
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is obtained. These results are in excellent agreement with polynomial fits
to the data. The dual condensate Σ1 as well as the dual scalar dressing ΣB
are promising candidates for a further study of the deconfinement transition
of QCD.

5. Summary

In this paper we addressed the chiral and the deconfinement transition
of quenched QCD. We showed results for the order parameter of the chiral
transition, the quark condensate, and for order parameters of the decon-
finement transition, the dressed Polyakov loop and the dual scalar dressing.
These were extracted from the Landau gauge quark propagator evaluated at
a continuous range of boundary conditions for the quark fields. Independent
of the dual order parameter used we found exactly the same deconfinement
transition temperature. A comparison of the transition temperatures for
the chiral and the deconfinement transition shows almost coincidence for
moderate quark mass of the order of an up-quark. In the chiral limit the
two transitions coincide within error. We find a second order chiral phase
transition at TχR/T 4 = 298(1) MeV and a similar temperature for the decon-
finement transition, Tdec = 299(3) MeV. In summary, we conclude that the
chiral and deconfinement transition temperatures are only slightly different
for finite quark masses and coincide within errors in the chiral limit.

The framework used in this work is quenched SU(2) Yang-Mills the-
ory. Our transition temperature may be translated into the corresponding
ones of quenched SU(3) QCD using the relations Tc/

√
σ = 0.709 (SU(2))

and Tc/
√
σ = 0.646 (SU(3)) between the respective critical temperatures

and the string tension [16]. The resulting transition temperature is then
TχR/T 4 ≈ Tdec ≈ 272 MeV in the chiral limit. In order to work in the
full, unquenched theory quark loop effects and meson effects which shift
the transition temperature below T = 200 MeV have to be taken into ac-
count. Concerning the dual condensate and scalar dressing function in the
unquenched formulation additional effects due to the Roberge–Weiss sym-
metry [15] occur. This is because of the formal similarity of the continuous
boundary conditions for the quark field to an imaginary chemical potential,
see [6] for details.
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University Young Investigator Grant VH-NG-332 and by the Helmholtz Al-
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