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We discuss the phase diagram of QCD at finite temperature T and
baryon chemical potential µB using the Polyakov-loop coupled Nambu–
Jona-Lasinio (PNJL) model. We propose a way to prescribe the phase
diagram by means of the thermodynamic quantities. We find that the
resulting phase diagram is consistent with the conventional one defined by
the chiral condensate and the Polyakov loop.
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1. Introduction

Phase transitions of QCD matter at finite temperature T and baryon
density or chemical potential µB have been of much interest in theory and
experiment on the relativistic heavy-ion collisions. It has been established
that, when µB is much smaller than T , strongly interacting matter under-
goes a phase transition at T that is comparable to the QCD energy scale
ΛQCD ∼ 200MeV. The phase transition is usually characterized by two ap-
proximate order parameters, i.e. the (traced) Polyakov loop ` = 1/3〈TrL〉
and the chiral condensate 〈q̄q〉. Although they happen to indicate a common
transition temperature, ` and 〈q̄q〉 belong to completely different dynamics
in QCD; the Polyakov loop is a good order parameter for quark deconfine-
ment in the quenched (mq →∞) limit, while the chiral condensate for chiral
restoration in the chiral (mq → 0) limit.

One may wonder that a rapid crossover in one side (quark deconfinement
for example) could be a trigger for transitional behavior in the other side
(chiral restoration for the same example). This is partially the case indeed.
The Polyakov loop and the chiral condensate have a quantum number 0++
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the same as that of the vacuum, so that they both describe the 0++ glueball
and the scalar–isoscalar (so-called σ) meson states, which can be mixed up
with each other. Because of mixing, it is natural to anticipate simultaneous
increase or decrease in the order parameters as a function of T and µB [1,2].
This explanation is not really adequate to give a full account for what has
been observed in the lattice QCD simulations [3].

In the density region where the Monte Carlo simulation is feasible it has
been found that ` and 〈q̄q〉 are monotonically increasing and decreasing, re-
spectively, as T goes from below to above Tc which is common to both order
parameters. This observation is something more than implied by mixing. In
general, the mixing argument cannot exclude a possibility that there appear
two separate crossovers with one dominated by deconfinement and another
by chiral restoration. The fact is, however, that quark deconfinement and
chiral restoration should take place at the same or nearly the same tempera-
ture. Two phenomena that are originally opposite to each other with respect
to mq must be locked together for a wide range of intermediate quark mass,
0 < mq <∞ [4].

Attempts to resolve this question about underlying mechanism in order
to link quark deconfinement and chiral restoration include a double expan-
sion of strong coupling constant and large dimensions. This was performed
to build an effective model in terms of both order parameters [5–8]. The
strong-coupling model was so successful that it could reproduce qualitative
behavior of ` and 〈q̄q〉 in a similar way to the finite-T lattice QCD simu-
lation. It was not easy, however, for the model to go beyond qualitative
agreement and to say anything quantitative. This is so because the model
was formulated on the lattice which is far from the continuum limit. Be-
sides, hopping of quarks in the spatial directions is suppressed by the strong
coupling constant and all quark excitations are static in configuration space
(straight along the temporal direction). The Fermi surface, hence, cannot
be formed correctly even with a finite µB introduced. Moreover, it is non-
trivial how to recover the Stefan–Boltzmann law at extremely high T due
to the presence of dimensional scale other than T , that is, a lattice spacing
or an ultraviolet (UV) cutoff.

The chiral sector of the strong-coupling model in the leading order of the
double expansion turns out to be an effective description in terms of quarks
with four-fermion vertices. This is reminiscent of a chiral effective model
with a UV cutoff, known as the Nambu–Jona-Lasinio (NJL) model [9, 10].
After revisiting the strong-coupling model [7,8] it had not been so long before
an idea was proposed that the NJL model is naturally augmented with the
Polyakov loop ` in a way inspired by the strong-coupling expansion [11].
Such a hybrid model with the Polyakov loop coupling is called the PNJL
model [12].
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Although the PNJL model originally aimed to explain the simultaneous
crossovers of quark deconfinement and chiral restoration, a bonus has been
recognized that thermodynamic quantities such as the pressure, the entropy
density, the quark number susceptibility, etc. are in good agreement with
the results from the lattice simulation with dynamical quarks once the model
parameters are fixed by the lattice data without quarks [12]. Since the lattice
QCD simulation is unable to access high-µB and low-T regions hindered by
the sign problem, the PNJL model is quite useful there. As we will see later,
one important prediction from the PNJL model is that two phase boundaries
of deconfinement and chiral crossovers may get apart from each other as µB
increases [11,14].

When it comes to the phase structure, the existence or location of the
chiral critical point of QCD is also of great interest [15, 16]. We mention
on the fact that the existence or location of the QCD critical point can
be drastically affected by slight changes in PNJL model studies [17]. In
this article we rather focus on another special point on the phase structure,
namely, a region that looks like a triple point. We will propose a prescription
to draw the phase diagram using the entropy density and the baryon number
density. In this way we shall understand a physical meaning of the triple-
point-like region intuitively.

2. Polyakov loop and physical degrees of freedom

It is quite non-trivial whether the PNJL model can reproduce full QCD
thermodynamics around Tc. This is because the Polyakov loop is expressed
in terms of longitudinal A4 (temporal component of the gauge field) only,
while the thermally excited gluons are transverse Ai in the perturbative
regime. In fact, the Polyakov loop is so influential to colored objects that
it can control the thermal excitation of transverse gluons as well as quarks.
In what follows let us discuss the Polyakov loop coupling with quarks and
transverse gluons in order.

2.1. Quarks

If we assume the mean-fields to incorporate interaction effects (i.e. quasi-
particle approximation), the grand-canonical partition function for quasi-
quarks is

Zquark =
∏
i,p

[
1 + e−(Ei(p)−µq)/T

] [
1 + e−(Ei(p)+µq)/T

]
, (1)

where i runs over 3 colors, 3 (or 2) flavors, and 2 spin states. A quark
chemical potential µq = µB/3 instead of µB is used above. We did not
consider the Polyakov loop coupling yet. The Polyakov loop, L, is a 3 × 3
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matrix in color space associated with thermal quark propagation, which
represents a color-screening phase factor. Therefore, the covariant coupling
with the A4 field leads to a coupling of L and L† with the thermal Boltzmann
factor as

Zquark =
∏
i,p

det
[
1 + Le−(Ei(p)−µq)/T

] [
1 + L†e−(Ei(p)+µq)/T

]
=
∏
i,p

[
1 + 3 ` e−(Ei−µq)/T + 3 ¯̀e−2(Ei−µq)/T + e−3(Ei−µq)/T

]
×
[
1 + 3 ¯̀e−(Ei+µq)/T + 3 ` e−2(Ei+µq)/T + e−3(Ei+µq)/T

]
. (2)

Here we note that ` denotes the traced Polyakov loop ` = 1/3 TrL and ¯̀ the
anti-Polyakov loop ¯̀ = 1/3 TrL†. At zero baryon density ¯̀ is just identical
with `, but once a finite density is turned on, ¯̀> ` for positive µq because an
antiquark is more efficiently screened in a medium with quarks. Each term
has a clear physical meaning in Eq. (2); in the angle brackets the first term
without the Boltzmann factor represents no particle excitation, the second
term proportional to e−(Ei−µq)/T a single particle excitation, the third term
proportional to e−2(Ei−µq)/T a two-particle or a diquark-like excitation in the
color antitriplet channel, and the last term a colorless baryon-like excitation.

Just to demonstrate how the Polyakov loop coupling controls thermal
excitations we shall compute the quark pressure pquark = TV −1 lnZquark

from the partition function (2) in which the quark mass and chemical po-
tential are set to be zero so that the pressure is simply proportional to T 4.
Then, in the free-quark limit (i.e. ` = ¯̀ = 1), the Stefan–Boltzmann law
reads pfree = (63π2/180)T 4 for massless three flavors. We measure the quark
pressure in the unit of the Stefan–Boltzmann value; ν = pquark/pfree, which
actually counts the relevant degrees of freedom. We plot ν as a function of `
in the simple case with mq = µq = 0 in the left of Fig. 1. It is apparent that
the pressure contribution is non-zero but nearly vanishing at ` = 0 and is
almost linearly increasing as ` becomes larger. If we recall that the Polyakov
loop is an order parameter for quark deconfinement, we can naturally un-
derstand this; no pressure from quarks in the confined phase at ` = 0 and
the free-quark limit is reached in the deconfined phase at ` = 1. It should
be mentioned here that the colorless baryon-like term in Eq. (2) remains
even at ` = 0 but its contribution to the pressure is suppressed by a factor
1/34 = 0.012 as compared to the free-quark excitation.

2.2. Transverse gluons

From the theoretical argument based on center symmetry in the pure
gluonic sector, the traced Polyakov loop in the color fundamental represen-
tation serves as an order parameter for quark deconfinement (but not for
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gluon deconfinement). Because gluons can screen other gluons, a long-range
confining force between gluons is saturated by string breaking due to two
glueball excitations even when color charge is strictly confined. Thus, it is
not clear a priori whether ` can be useful to parametrize the pressure from
transverse gluons.

In the same manner as in the quark case we can consider the grand-
canonical partition function for quasi-gluons, that is,

Zgluon =
∏
i,p

det
[
1− Ladj e

−p/T
]
, (3)

where i runs over 8 colors and 2 transverse polarizations. Here we intro-
duced Ladj to denote an 8 × 8 Polyakov loop matrix in the color adjoint
representation. In the Stefan–Boltzmann limit with Ladj = 1, the pressure
is pfree = (16π2/90)T 4. Again, the gluon pressure is calculated from Eq. (3)
in the unit of the Stefan–Boltzmann value and the numerical result is shown
in the right part of Fig. 1. The pressure dependence on ` is not linear this
time but almost quadratic reflecting the fact that the adjoint Polyakov loop
is expressed as {Ladj}ab = 2Tr[ta L tb L†] in terms of the fundamental one.

It might be appropriate here to explain some more details on the eval-
uation of the transverse pressure. Unlike the quark contribution (2) we
cannot rewrite the gluon pressure (3) only in terms of ` and ¯̀. It re-
quires us, therefore, to adopt an elaborated procedure for the mean-field
approximation [5,7,18–21]. Then, a mean-field weight factor is introduced as
e−Smf =

∏
exTrL, so that the expectation value of the fundamental Polyakov

loop, `(x) =
∫
dL 1/3 TrLexTrL/

∫
dL exTrL takes a nonzero value propor-

tional to a mean-field variable x (that is; x is a source conjugate to `). In
the same way the gluon pressure is numerically calculated as a function of
x, from which we can eliminate the x-dependence using ` = `(x).
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Fig. 1. Pressure contributions from quasi-quarks (left) and quasi-gluons (right) as
a function of the traced Polyakov loop ` in the color fundamental representation.
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It is surprising that a Polyakov loop value as large as 0.8 yields a trans-
verse pressure less than 0.6 times the Stefan–Boltzmann value. The right
part of Fig. 1 manifests the importance of the Polyakov loop even in the
deconfined region where ` is substantially large but do not yet reach unity.
In this region the screening effect by the Polyakov loop overwhelmingly gov-
erns the degrees of freedom allowed in the system, which would cause non-
perturbative deviations from the Stefan–Boltzmann limit regardless of the
interaction strength. Such a highly non-trivial state of matter is sometimes
referred to as a semi-quark–gluon plasma (semi-QGP) [22].

3. Thermodynamics in pure gluodynamics

So far we have seen that the Polyakov loop can control the thermal
excitation even for transverse gluons which couple with the adjoint Polyakov
loop which is always non-zero due to color screening by other gluons. It
should be acceptable to parametrize the physical pressure only in terms of `,
which can be justified by the observation in the right part of Fig. 1 that `
is practically an order parameter for gluon deconfinement as well.

Therefore, we may well assume that the pressure in pure gluodynam-
ics is a function of ` with coefficients depending on T . A frequently used
ansatz [23] is

V (`) = −1
2 a(T ) ` ¯̀+ b(T ) ln

[
1− 6 ` ¯̀+ 4(`3 + ¯̀3)− 3(` ¯̀)2

]
, (4)

where a(T )/T 4 = (3.51 − 2.47 t−1 + 15.2 t−2) and b(T )/T 4 = −1.75 t−3

with t = T/Tc. There are three independent parameters in this ansatz
because of a constraint that V (` = 1) should obey the Stefan–Boltzmann
law. This form (4) is very similar to another ansatz with two parameters α
and β motivated by the strong coupling analysis; a(T )/T = 54βe−α/T and
b(T )/T = β, where β has mass dimension 3 whose scale comes from the
UV cutoff [11, 17]. In the vicinity of Tc both parametrizations end up with
approximately same thermodynamics anyway.

From the stationary condition dV/d` = 0 the Polyakov loop expectation
value is extracted from Eq. (4), which is compared with the lattice data
taken from Ref. [24] as presented in the left part of Fig. 2. Because of
renormalization effect the Polyakov loop in the lattice simulation exceeds
unity, while ` never gets greater than unity. This is why the agreement
looks worse at high temperature. We see, in contrast, that the fitting works
nicely and the potential reproduces the thermodynamic quantities such as
the pressure p, the entropy density s, and the internal energy density ε well.
For the sake of comparison we plot the output from Eq. (4) and the lattice
data taken from Ref. [25]. Now we have finished fixing the pure gluonic
sector.
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Fig. 2. Comparison between the quenched lattice data — thick curves (green) and
the results from the potential ansatz — thin curves (red). The left part shows the
Polyakov loop and the right part shows the thermodynamic quantities.

4. Thermodynamics with dynamical quarks

The quark sector is described by the NJL model which has three param-
eters, namely, the current quark mass mu = md, the four-fermion coupling
constant gs, and the UV cutoff Λ for the two-flavor case, and two more pa-
rameters, namely, the strange quark mass ms and the ’t Hooft interaction
strength gd for the three-flavor case. The model parameters are fixed by the
hadron properties; mπ, fπ, and 〈q̄q〉 for two-flavor matter, and mK and mη′

in addition for three-flavor matter.
The NJL model with the Polyakov loop coupling in Eq. (2) and the

potential in Eq. (4) gives full thermodynamics in the plane spanned by T
and µB. We plot some of thermodynamic quantities in Fig. 3. The left part
shows the entropy density that is s = −∂Ω/∂T and the right part shows the
baryon number density that is nB = −∂Ω/∂µB. The reason why we chose
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Fig. 3. Entropy density (left) and baryon number density (right) normalized by the
Stefan–Boltzmann limit values as functions of T and µB obtained in the three-flavor
PNJL model.
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them is that s and nB should be suitable for detecting a change of the state
of matter as T and µB increases, respectively [26]. One can see that s is an
increasing function of T whose dependence on µB is mild, while nB jumps
drastically with increasing µB. One possible interpretation is that s carries
information on the deconfinement and nB is an effective order parameter for
the realization of so-called quarkyonic matter [27–29].

5. Phase diagram

The PNJL model is capable of dealing with ` and 〈q̄q〉 both as T and µB
change, from which the phase diagram is deduced. The phase diagram in the
context of the PNJL model was first depicted in Ref. [23], and in Ref. [14]
it was clearly recognized that the deconfinement line characterized by the
Polyakov loop (susceptibility) becomes distinct from the chiral transition
line characterized by the chiral condensate (or susceptibility). The model
has been extended to the three-flavor case later on [17,30,31]. In the presence
of the Polyakov loop background it is not easy to take account of the diquark
condensate. In Refs. [23,32,33] the diquark condensate has been considered
in a gauge dependent treatment, but as pointed out in Ref. [32] such a
treatment breaks color neutrality even in normal quark matter, which is
unphysical artifact. A remedy is formulated in Ref. [21], but for technical
reasons its application to the color-superconducting phase has not been done
yet.

So far, in view of existing works on the phase diagram using the PNJL
model [14, 17, 23, 30, 31] the robust prediction is that two separate phase
boundaries appear on the phase diagram. A typical example is shown in
Fig. 4.

This phase diagram is topologically the same as suggested by the largeNc

argument [27–29]. In the region surrounded by two phase boundaries (which
have finite width in Fig. 4 because they are both crossovers) the color degrees
of freedom is confined because of ` ' 0 and chiral symmetry is restored and
the Fermi sphere is filled by light quarks. Intuitive understanding on this
peculiar state is as follows; the degenerated Fermi matter consists of light
quarks and any excitation on top of the Fermi surface should be colorless
like mesons and baryons.

In the left we show the phase diagram defined in a conventional way
using the order parameters. The right of Fig. 4 is a phase diagram deduced
from the entropy density and the baryon number density normalized by the
Stefan–Boltzmann values. We see that the baryon density follows along
the boundary of the chiral phase transition. This is because a transitional
change in the constituent quark mass is attributed to a rapid jump in the
baryon number density. Also we note that the entropy density is suppressed
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Fig. 4. Typical phase diagrams from the PNJL model. Left: The gray (red) band
indicates a region in which ` takes a value from 0.4 to 0.6 and the dark gray (blue)
band a region in which 〈q̄q〉/〈q̄q〉0 from 0.4 to 0.6. A circle locates the critical point
below which the chiral phase transition is of the first order and the dark gray (blue)
band has no width. Right: The gray (red) and dark gray (blue) bands represent
a region where s and nB in the unit of the Stefan–Boltzmann value take a value
from 0.1 to 0.3, respectively.

as long as the Polyakov loop stays small, which is a natural consequence in
the quark confined phase. Thus, we can conclude that it is reasonable to
depict the phase diagram by means of the thermodynamic quantities.

Finally, we make a remark that this way of formulating the thermody-
namic phase diagram has an advantage over the order parameters. That
is, we can use a statistical model, for example, to extract the information
on the phase boundary [26]. The statistical model is a hadronic description
and thus it is not valid above Tc. Nevertheless, if the quark–hadron duality
holds, there must be an overlapping region where both quark and hadron
models are eligible. Since the statistical model is so successful to account
for the observed particle ratios, it would be interesting to see the location
of the phase boundaries implied by the model.
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