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I describe the parton picture at strong coupling as emerging from the
gauge/gravity duality and its consequences for high-energy scattering and
for the hard probes of a strongly coupled plasma, as potentially relevant
for heavy collisions at RHIC and LHC. I emphasize the differences with
respect to the corresponding picture in perturbative QCD.

PACS numbers: 11.15.Pg, 11.25.Tq, 12.38.Gc, 25.75.Cj

1. Introduction: from RHIC to lattice QCD

Some of the experimental discoveries at RHIC, notably the unexpect-
edly large medium effects known as elliptic flow and jet quenching, led to
the suggestion that the deconfined hadronic matter produced in the inter-
mediate stages of a heavy ion collision is a nearly perfect fluid, so like a
strongly coupled plasma. The coupling constant αs = g2/4π in QCD can
never become large, because of asymptotic freedom, but it can be of order
one at scales of order ΛQCD, and this might lead to an effectively strong-
coupling behavior. It is notoriously difficult to do reliable estimates in QCD
when αs ' 1, so it has become common practice to look to the N = 4 su-
persymmetric Yang–Mills (SYM) theory, whose strong coupling regime can
be addressed within the AdS/CFT correspondence [1], for guidance as to
general properties of strongly coupled plasmas (see the review papers [2–4]).
Since conformal symmetry is an essential property of N = 4 SYM, this
theory cannot be used as a model for the dynamics in QCD in the vicinity
of the deconfinement phase transition (T ' Tc ' 170 MeV), but only for
larger temperatures, within the range 2Tc . T . 5Tc, where QCD itself is
known (from lattice studies [5]) to be nearly conformal. This is precisely
the temperature range which is relevant for the phenomenology of heavy ion
collisions at RHIC and LHC.

∗ Talk presented at the EMMI Workshop and XXVI Max Born Symposium “Three
Days of Strong Interactions”, Wrocław, Poland, July 9–11, 2009.
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Fig. 1. Left: The ratio RAA of measured versus expected yield of various particles
(π0, η, γ) in Au+Au collisions at

√
sNN = 200GeV as function of the transverse

momentum pT (RHIC, PHENIX). Right: Azimuthal correlations for jet measure-
ments at RHIC (STAR) in p+ p, d+Au, and Au+Au collisions.

Among the most intriguing RHIC data are those referring to jet quench-
ing, i.e., the energy loss and the transverse momentum broadening of a
relatively “hard” probe (a heavy and/or energetic quark or lepton, with
transverse momentum of a few GeV), for which one would naively expect
a weak-coupling behavior, by asymptotic freedom. Yet, perturbative QCD
seems to be unable to explain the strong suppression of particle production in
Au+Au collisions, as shown in Fig. 1 (left). Namely, the ratio RAA between
the particle yield in Au+Au collisions and that in p + p collisions rescaled
by the number of participants would be one in the absence of medium ef-
fects. But the RHIC measurements yield a very small value RAA ≈ 0.2
(for hadron production) which suggests that, after being produced through
a hard scattering, the partonic jets are absorbed by the surrounding medium.

Additional evidence comes from direct studies of jets, cf. Fig. 1 (right).
A high-energy proton–proton collision generally produces a pair of partons
whose subsequent evolution via fragmentation and hadronisation leaves two
jets of hadrons which propagate back-to-back in the center of mass frame
(see Fig. 2 (left)). Hence, the distribution of the final state radiation w.r.t.
the azimuthal angle ∆Φ shows two pronounced peaks, at ∆Φ = 0 and π
— the curve denoted as “p + p min. bias” in Fig. 1 (right). A similar
distribution is seen in deuteron–gold collisions at RHIC, but not in central
Au+Au collisions, where the peak at ∆Φ = π has disappeared, as visible
in Fig. 1 (right). It is then natural to imagine that the hard scattering
producing the jets has occurred near the edge of the interaction region, so
that the near side jet has escaped to the detector, while the away side jet
has been absorbed within the medium (see Fig. 2 (right)).
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jet
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Fig. 2. Jet production in high-energy scattering. Left: a proton–proton collision:
the leading partons fragment into two back-to-back hadronic jets. Right: a nucleus–
nucleus collision: one of the leading partons escapes the interaction region and
enters the detector, but the other one is absorbed in the surrounding matter.

These results at RHIC show that the matter produced in the intermediate
stages of a heavy ion collision is opaque, which may well mean that this
matter is dense, or strongly-coupled, or both. It is then natural to ask
whether one can discriminate between weak coupling and strong coupling
behavior on the basis of the lattice results for the QCD thermodynamics.
Unfortunately however, the theoretical interpretation of these results is not
completely free of ambiguities, as we now explain.

Figure 3 exhibits the lattice results for the conformal anomaly (ε−3p)/T 4

(left) and for the pressure p (right) in units of T 4. The left figure confirms
that the QCD plasma is nearly conformal for temperatures T & 2Tc: after
showing a peak at the deconfinement phase transition, the relative conformal
anomaly (ε−3p)/ε decreases very fast with increasing T and becomes smaller
than 10% when T & 2Tc. The right figure shows that, after a rapid jump at
the phase transition, the pressure slowly approaches the respective ideal gas
limit p0, in such a way p/p0 ' 0.85 at T = 3Tc. This deviation from the ideal
gas is rather small, of the order of the first perturbative correctionO(αs), and
indeed perturbation theory in QCD at finite temperature does a good job in
reproducing the lattice results for temperatures T & 2.5Tc; this is shown by
the “HTL” band in that figure [7]. On the other hand, this value p/p0 ' 0.85
is not too far from the respective result in the strong-coupling limit of N = 4
SYM (as computed within AdS/CFT), which is p/p0 = 0.75 [1]. Thus,
although consistent with weak coupling expectations, the lattice results for
thermodynamics do not totally exclude a strong-coupling behavior in the
QCD plasma in the considered range of temperatures.
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Fig. 3. Lattice results for the QCD trace anomaly, T µ
µ = ε−3p (left) [5] and for the

pressure of the SU(3) gauge theory (right) [6]. In the right figure, different lines
correspond to different gauge actions, whereas the upper band denoted as “HTL”
represents the results of a parameter-free resummation of perturbation theory [7].
The small arrow in the upper right corner indicates the pressure of an ideal gas.

2. A lattice test of the coupling strength in QCD

If the lattice results for the QCD thermodynamics cannot convincingly
discriminate between weak and strong coupling behavior, is there any other
test of the strength of the coupling in lattice QCD at finite temperature?
In what follows, we shall describe a recent proposal in that sense [8], which
involves the lattice measurement of leading-twist operators. These are the
operators with spin n, classical dimension d = n+2, and twist t = d−n = 2,
which in the weak coupling regime control the operator product expansion
(OPE) of deep inelastic scattering (DIS) at large photon virtuality Q2 [9].
There are two infinite sequences of leading-twist operators — fermionic and
gluonic — among which we show here only those with n = 2:

Oµνf ≡
1
2 q̄
(
γµiDν + γνiDµ

)
q , (1)

(with an implicit sum over quark flavors and zero quark masses) and

Oµνg ≡ −Fµαa F ν,aα + 1
4 g

µνFαβa F aαβ . (2)

These are recognized as the energy-momentum tensors for quarks and glu-
ons, respectively. The hadron expectation values of the spin-n leading-twist
operators measure the (n − 1)-th moment of the longitudinal momentum
fraction carried by the quark and gluon constituents of that hadron.

Being composite, these operators are well defined only with a renormal-
ization prescription, and thus implicitly depend upon the renormalization
scale Q2. Physically, this dependence expresses the fact that quantum fields
can radiate and their internal structure in terms of “bare” quanta depends
upon the resolution scale Q2 at which one probes this structure.
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For instance, the success of the valence parton picture for high-energy
scattering in QCD is deeply related to asymptotic freedom which guaran-
tees that parton branching at Q2 � Λ2

QCD is controlled by weak coupling.
This proceeds via bremsstrahlung, which favors the emission of “soft” and
“collinear” quanta, i.e. quanta which carries only a small fraction x of the
longitudinal momenta of their parent partons and relatively small transverse
momenta. Hence, although there are many small-x gluons in the proton
wavefunction at high energy, most of the proton longitudinal momentum is
still carried by the point-like valence quarks.

By contrast, at strong coupling one expects parton branching to be fast
and “quasi-democratic”: the energy of the parent parton is quasi equally
shared by the daughter partons. Through successive branchings, all partons
should cascade down to small-x constituents [10–12]. Hence, a strongly-
coupled hadron or plasma cannot involve point-like constituents which carry
a significant fraction of the total energy.

These considerations are encoded in the renormalization group equations
describing the evolution of the leading-twist operators with the resolution
scale µ2. Up to operator mixing issues to which we shall return in a moment,
these equations read (for a generic spin-n operator O(n))

µ2 d

dµ2
O(n) = γ(n)O(n) =⇒ O(n)(Q2)

O(n)(µ2
0)

= exp


Q2∫
µ2

0

dµ2

µ2
γ(n)(µ2)

 , (3)

where γ(n) is the corresponding anomalous dimension and is strictly negative
— meaning that the evolution increases the number of partons with small
longitudinal momentum fraction x while decreasing that of the partons with
large x — except for the total energy-momentum operator

Tµν = Oµνf +Oµνg , (4)

which has zero anomalous dimension since it is a conserved quantity (and
hence it does not depend upon the resolution scale Q2). Hence, in the
continuum limit Q2 → 0, the expectation values of all the leading-twist
operator except for T must vanish. But the rate of this evolution is very
different at weak and respectively strong coupling.

(i) Weak coupling: To lowest order in the running coupling, one has

γ(n)(µ2) = −a(n)αs(µ2)
4π

=⇒ O(n)(Q2)
O(n)(µ2

0)
=
[

ln(µ2
0/Λ

2)
ln(Q2/Λ2)

]a(n)/b0

, (5)

with αs(µ2) = 4π/[b0 ln(µ2/Λ2)], Λ ≈ 200MeV, b0 = (11Nc − 2Nf )/3, and
a(n) > 0. Thus, the perturbative evolution is merely logarithmic.
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(ii) Strong coupling and conformal field theory: At strong coupling, direct
calculations in QCD are not possible anymore, but we shall use the corre-
sponding results for N = 4 SYM for some qualitative insight. In a conformal
field theory, γ(n) is scale-independent and negative (with the exception of
Tµν , of course), so the evolution is power-like:

O(n)(Q2)
O(n)(µ2

0)
=
[
µ2

0

Q2

]|γ(n)|
. (6)

Moreover, AdS/CFT predicts that, at strong coupling λ ≡ g2Nc � 1, all
the non-zero anomalous dimensions are very large |γ(n)| ∼ O(λ1/4) [13], so
the leading-twist operators rapidly die away with increasing Q2 (meaning
that all partons have fallen down to small values of x).

These results suggest that a natural way to measure the strength of the
coupling in QCD at finite temperature is to compute thermal expectation
values of leading-twist operators in lattice QCD [8]. These operators evolve
from the natural physical scale T up to the resolution scale Q set by the
lattice spacing: Q = a−1. In practice, the ratio Q/T = aT is not very large,
Q/T . 10, so if the evolution is perturbative, cf. (5), the expectation value
of an unprotected operator is only slightly reduced — by a few percent. On
the other hand, if the plasma is effectively strongly coupled at the scale T ,
then at least the early stages of the evolution should involve a large negative
anomalous dimension, leading to a strong suppression in the expectation
value measured at the final scale Q.

The previous argument applies to the unprotected operators, which in-
clude all the higher-spin operators with n ≥ 4. Unfortunately, however, it
turns out that it is very difficult, if not impossible, to accurately measure
on the lattice such high-spin operators. There is another possibility, though,
which should be easier in practice: this is to measure the linear combination
of the spin-2 operators in Eqs. (1), (2) which is orthogonal to Tµν within the
renormalization flow and therefore has a non-zero, and negative, anomalous
dimension. In full QCD, one is unable to identify the relevant orthogonal
operator except in perturbation theory. However, there is a simpler, but
still non-trivial, version of the theory in which the answer to this question is
known for any value of the coupling: this is quenched QCD, i.e. the theory
obtained from QCD after removing all the quark loops. On the lattice, this
is non-perturbatively defined by removing the fermionic determinant from
the QCD action. As argued in Ref. [8], Oµνf is the operator orthogonal to
Tµν in this framework: indeed, in quenched QCD, a quark can emit gluons,
but the emitted gluons, as well as those from the thermal bath, are not al-
lowed to emit quark–antiquark pairs. Hence, when the system is probed on
a sufficiently hard scale, most of the total energy appears in the gluons.
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To summarize, the proposal made in Ref. [8] is to measure the thermal
expectation value 〈O00

f (Q2)〉T of the quark energy density in lattice quenched
QCD, for a temperature between 2Tc and 5Tc. If the deviation from the
corresponding result for the ideal Fermi–Dirac gas turns out to be relatively
small, say . 30%, then one can conclude that the QCD plasma is weakly
coupled at the scale T . If on the other hand the lattice result turns out to
be considerably smaller, then there must be a regime in µ around T where
QCD is effectively strongly coupled.

3. DIS and parton saturation at strong coupling

The previous discussion emphasized the importance of understanding
parton evolution at strong coupling. At least for the N = 4 SYM theory,
this can be done within the gauge/string duality. The simplest version of
the formalism, known as the “supergravity approximation”, is obtained by
taking the large-Nc limit, or, equivalently, the large ‘t Hooft coupling limit:
λ = g2Nc → ∞ with g fixed and small (g � 1). This is generally not a
good limit to study a scattering process, since the corresponding amplitude
is suppressed as 1/N2

c [10, 11]. Yet, this is meaningful for processes taking
place in a deconfined plasma, which involves N2

c degrees of freedom per
unit volume, thus yielding finite amplitudes when Nc → ∞. In this limit,
the N = 4 SYM plasma at finite temperature is described as a “black-hole”
(more properly, a black-brane) embedded in AdS5 and the dynamics reduces
to classical gravity in this curved space-time [1–4]. It should be emphasized
that the black hole (BH) is homogeneous in the physical 4 dimensions1 but
it has an horizon in the radial, or “fifth”, dimension of AdS5, at a position
which is determined by the temperature of the plasma.

The AdS5 BH geometry is illustrated in Fig. 4, which also shows the
supergravity process dual to DIS off the N = 4 SYM plasma: A space-like
virtual photon, with 4-momentum qµ = (ω, 0, 0, q) and virtuality
Q2 ≡ q2 − ω2 � T 2, acts as a perturbation on the Minkowski boundary
of AdS5 (at χ = 0), thus inducing a massless, vector, supergravity field Am
(with m = µ or χ) which propagates within the bulk of AdS5 (χ > 0),
according to the Maxwell equations in curved space-time:

∂m
(√
−ggmpgnqFpq) = 0 , where Fmn = ∂mAn − ∂nAm . (7)

Here, gmn is the metric tensor in 5-dimensions which in particular contains
the information about the BH horizon at χ = 1/T . Thus (7) describes
the gravitational interaction between the Maxwell field Am and the BH. As

1 More recently, a finite-length plasma “slice” has been considered too, as a model for
a nucleus which admits a simple supergravity dual (a “shockwave”) [15].
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Fig. 4. Space-like current in the plasma: the trajectory of the wave packet in AdS5

and its “shadow” on the boundary. Left: low energy — the Maxwell wave gets
stuck near the boundary. Right: high energy — the wave falls into the BH.

usual, the strength of this interaction is proportional to the product ω2T 4

between the energy densities in the two interacting systems. Interestingly,
there is a threshold value for this quantity, of order Q6, below which there
is essentially no interaction [12]: so long as ωT 2 � Q3, the Maxwell wave
is stuck within a distance χ . 1/Q � 1/T from the Minkowski boundary
and does not “see” the BH (cf. Fig. 4 (left)). But for higher energies and/or
temperatures, such that ωT 2 & Q3, the wave gets attracted by the BH and
eventually falls into the latter. Physically, this means that the energetic
space-like photon is absorbed with probability one into the plasma — the
“black disk limit” for DIS (cf. Fig. 4 (right)).

This critical value Qs ∼ (ωT 2)1/3, known as the saturation momentum,
together with the physical picture of the scattering, can be understood with
the help of the “UV/IR correspondance”, which relates the 5th dimension of
AdS5 to the momenta (or typical sizes) of the quantum fluctuations which
are implicitly integrated out in the boundary gauge theory. Namely, the
radial penetration χ of the Maxwell wave packet in AdS5 is proportional to
the transverse size L of the quantum fluctuation of the virtual photon in the
dual gauge theory. By the uncertainty principle, we expect a highly energetic
space-like photon with ω ' q � Q to fluctuate into a partonic system with
transverse size L ∼ 1/Q — which indeed matches the radial penetration of
the dual Maxwell field, as illustrated in Fig. 4 (left) — and a finite lifetime
∆t ∼ ω/Q2. In the vacuum, the space-like fluctuation cannot decay into
on-shell partons, by energy-momentum conservation. But the situation can
change in the presence of the plasma. Unlike the photon, which is color
neutral, its partonic fluctuation has a dipolar color moment and thus can
interact with the plasma. Via such interactions, the partons can acquire the
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energy and momentum necessary to get on-shell, and then the fluctuation
decays: the space-like photon disappears (cf. Fig. 4 (right)).

Let us now return to the saturation momentum Qs ∼ (ωT 2)1/3. The
condition Q ∼ Qs can be rewritten as

Q ∼ ω

Q2
T 2 , (8)

which admits the following interpretation [12] : the scattering becomes
strong when the lifetime ∆t ∼ ω/Q2 of the partonic fluctuation is large
enough for the mechanical work W = ∆t × FT done by the plasma force
FT ∼ T 2 acting on these partons to compensate for the energy deficit Q of
the space-like system. This plasma force FT ∼ T 2 represents the effect of
the strongly-coupled plasma on color dipole fluctuations and can be viewed
as a prediction of the AdS/CFT calculation. Introducing the Bjorken x
variable x ≡ Q2/(2ωT ) for DIS off the plasma (this represents the longitudi-
nal momentum fraction of the plasma constituent which absorbs the virtual
photon), one can rewrite the plasma saturation line as Qs(x) = T/x or,
alternatively, xs(Q) = T/Q.

The AdS/CFT results suggest the following partonic picture for the
strongly-coupled plasma [12]. For Q� Qs(x) (or, equivalently, x� xs(Q)),
the scattering is negligible and the DIS structure function F2 is exponentially
small: F2(x,Q2) ∼ exp {−Q/Qs(x)}. This shows that there are no pointlike
constituents in the strongly coupled plasma, in agreement with the OPE
argument in Sec. 2. For x . xs(Q), the scattering is strong and the struc-
ture function is found as F2(x,Q2) ∼ xN2

cQ
2. This is in agreement with our

physical expectation that partons must accumulate at small values of x, as a
result of branching, and is moreover consistent with energy-momentum con-
servation, which requires the integral

∫ 1
0 dxF2(x,Q2) to have a finite limit

as Q2 →∞ [9]. The previous results imply indeed
1∫

0

dxF2(x,Q2) ' xsF2(xs, Q
2) ∼ N2

c T
2 , (9)

where the integral is dominated by x ' xs(Q): the energy and momentum of
the plasma as probed on a “hard” resolution scale Q2 � T 2 is fully carried
by the partons “along the saturation line”, i.e., those having x ' T/Q.
A similar picture holds for other hadronic targets so like a “glueball” [10,11]
or a “nuclear” shockwave [15], but the respective saturation momentum rises
slower with 1/x than for the infinite plasma: Q2

s (x) ∝ 1/x for a finite-size
“hadron” as opposed to Q2

s (x) ∝ 1/x2 for the plasma. The additional factor
1/x in the case of the plasma comes from the lifetime ∆t ∼ ω/Q2 ∼ 1/xT
of the partonic fluctuation: since the medium is infinite, the effects of the
scattering accumulate all the way along the parton lifetime.
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4. High-energy scattering and hard probes

The previously discussed parton picture at strong coupling has some
striking physical consequences for the high-energy scattering problem which
look very different from our experience with QCD. For instance, the rapid
energy growth Q2

s (x) ∝ 1/x of the saturation momentum is much faster
than the respective growth observed in the HERA data, namely Q2

s ∼ 1/xω

with ω ' 0.2÷ 0.3, and which is in fact well accounted for by perturbative
QCD [16]. Also, the absence of large-x partons in a hadronic wavefunction
at strong coupling means that, in a hypothetical scattering between two such
hadrons, there would be no particle production at either forward or backward
rapidities: the two nuclei colliding with each other at strong coupling would
fully stop each other [17]. This is in sharp contrast to the situation at RHIC,
where the large-x partons from the incoming nuclei are seen to emerge from
the collision, as hadronic jets, along their original trajectories.

A related prediction of AdS/CFT is the absence of jets in electron–
positron annihilation at strong coupling [12,14]. Fig. 5 exhibits the typical,
2-jet, final state in e+e− annihilation at weak coupling (left) together with
what should be the corresponding state at strong coupling (right). In both
cases, the final state is produced via the decay of a time-like photon into a
pair of partons and the subsequent evolution of this pair. At weak coupling
this evolution typically involves the emission of soft and collinear gluons,
with the result that the leading partons get dressed into a pair of well-
collimated jets of hadrons (cf. Fig. 5 (left)). Multi-jet (n ≥ 3) events are
possible as well, but they have a lower probability, as they require hard
parton emissions in the final state, which are suppressed by asymptotic free-
dom [9]. At strong coupling, on the other hand, parton branching is much
more efficient, as previously explained, and rapidly leads to a system of nu-
merous and relatively soft quanta, with energies and momenta of the order
of the soft, confinement, scale, which are isotropically distributed in space.
Thus, the respective final state shown no sign of jets, but only an isotropic
distribution of hadronic matter (cf. Fig. 5 (right)) [14].

Fig. 5. Final state in e+e− annihilation. Left: weak coupling, right: strong cou-
pling.
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Let us finally address the problem of interest for heavy ion physics,
namely the propagation of a ‘hard probe’ through a strongly-coupled plasma.
Consider e.g. the energy loss of a heavy quark: the respective AdS/CFT
calculation has been given in [18], but the result can be also inferred from
the present parton picture [20]. Among the virtual, space-like, quanta which
are continuously emitted and reabsorbed by the heavy quark, only those can
escape to the plasma which have a virtuality Q lower than the plasma satu-
ration momentum Qs(x) for a value of x set by the lifetime of the fluctuation:
1/x ∼ T∆t with ∆t ∼ ω/Q2. Since dE/dt ∝ ω/∆t ∼ Q2, the energy loss
is controlled by the fluctuations having the maximal possible value for the
virtuality, that is, Q ∼ Qs(x) with x set by the rapidity γ of the heavy
quark. Using γ = ω/Q and Qs ∼ T/x ∼ γT 2/Qs, one finds Qs ∼

√
γ T and

−dE
dt
'
√
λ

ω

(ω/Q2
s )
'
√
λQ2

s ∼
√
λ γ T 2 , (10)

where the factor
√
λ expresses the fact that, at strong coupling, the heavy

quark does not radiate just a single quanta per time ∆t, but rather a large
number ∼

√
λ. Eq. (10) is parametrically consistent with the respective

AdS/CFT result [18]. Note the strong enhancement of the medium effects
at high energy, as expressed by the Lorentz γ factor in the r.h.s. of (10): this
is in qualitative agreement with the strong suppression of particle production
seen in Au+Au collisions at RHIC, but one should be very careful before
directly comparing such AdS/CFT results with the QCD phenomenology.

Consider similarly the momentum broadening: the
√
λ quanta emitted

during a time interval ∆t are uncorrelated with each other, so their trans-
verse momenta are randomly oriented and the cumulating recoils increase
the average squared transverse momentum of the heavy quark:

d〈p2
⊥〉
dt

∼
√
λQ2

s

(ω/Q2
s )
∼
√
λ
Q4

s

γQs
∼
√
λ
√
γ T 3 . (11)

This is parametrically the same as the respective AdS/CFT results [19]. But
this mechanism is different from the one at work in perturbative QCD, where
the dominant contribution to momentum broadening rather comes from the
medium rescattering.

To summarize, the strong-coupling picture of high-energy scattering ap-
pears to be very different from everything we know, theoretically and exper-
imentally, about real-life QCD. There are no valence partons, the saturation
momentum (and hence the cross-sections) grows much too fast with increas-
ing energy, and there are no jets in the final state. This is not necessarily
a surprise: within QCD, these high-energy phenomena are controlled by
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hard momentum exchanges and thus by weak coupling, because of asymp-
totic freedom. On the other hand, AdS/CFT might give us some qualitative
insight in the semi-hard physics of particle production in heavy ion colli-
sions, and also in some longstanding problems like thermalization and the
emergence of hydrodynamics in the late stages of the collision [21].
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