
Vol. 3 (2010) Acta Physica Polonica B Proceedings Supplement No 3
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Numerical results on the QCD equation-of-state from lattices with tem-
poral extents 4, 6 and 8 are presented. The computations have been per-
formed within two different discretization schemes, the p4 and the asqtad
actions which improve lattice artefacts for thermodynamic observables at
high temperatures. In the course of these computations also observables
that are sensitive to deconfinement and chiral symmetry restoration were
analyzed. In addition, quantities measuring fluctuations and correlations
of baryon number, strangeness and electric charge have been studied.
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1. Introduction

The equation of state (EoS) of hot and strongly interacting matter is a
fundamental property of finite temperature QCD, not only from a theoretical
point of view but also phenomenologically. For instance, the interpretation
of experimental results from heavy ion colliders relies on the determination of
energy density and pressure as well as on an understanding of deconfinement
and chiral symmetry.

Under RHIC and LHC conditions the net baryon density of hot matter
created in these experiments is small so that for most questions lattice results
obtained at vanishing chemical potentials are appropriate. In this region
the transition from the low temperature hadronic to the high temperature
plasma regime most likely is continuous and fluctuations are not expected to
show singular behavior. Nevertheless, fluctuations and their higher moments
even if computed at vanishing chemical potential not only give insight into
the relevant degrees of freedom at a given temperature but also hint towards
nearby singularities either in the chiral limit or at a possible critical point
in the QCD phase diagram [1].
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In the present contribution our results on the equation of state, i.e. pres-
sure, energy and entropy density are summarized. Furthermore, deconfine-
ment and chiral symmetry restoration as well as fluctuations and correlations
of certain quantum numbers are discussed. Due to steady technical progress
the necessary lattice computations can now be performed with a quark mass
spectrum which is (almost) realistic. It is, however, important to control dis-
cretization effects. Therefore, the results presented here have been generated
on the basis of so-called improved actions which were designed to reduce the
effects of non-vanishing lattice spacing (a) at high temperature. Moreover,
the calculations were carried out at different values of a. An extensive dis-
cussion of the discretization effects, however, is beyond the scope of this
contribution and I refer to [2–5] in this regard.

2. The equation of state

2.1. Calculational setup

The results for the equation-of-state presented here are for (2+1)-flavor
QCD. They have been obtained from lattices with temporal extent Nτ = 4, 6
and 8, corresponding to different lattice spacings aT = 1/Nτ , and are based
on high statistics numerical simulations performed with two different im-
proved discretization schemes for staggered fermions, the tadpole improved
asqtad action [6] and the tree level improved p4 action [7]. For details of the
generation of the gauge field configurations we refer to [2–4].

For each finite temperature calculation that entered the analysis of the
equation of state, a corresponding “zero temperature” calculation has been
performed at the same value of the gauge coupling and for the same set of
bare quark mass values, in order to determine the necessary UV normal-
izations. Moreover, “zero temperature runs” were needed to fine-tune the
bare lattice parameters as follows. Apart from the lattice size, N3

σ ×Nτ , the
partition function, as well as any lattice observable, depends on the lattice
spacing a, the bare gauge coupling, β = 6/g2, and the bare light and strange
quark masses, m̂u = m̂d = m̂l and m̂s, respectively. The bare quark masses
have been tuned at T = 0 such as to correspond to fixed Goldstone1 mass
mπ and fixed kaon mass mK in physical units. This defines a so-called “line
of constant physics”. It turned out that fixing the light to strange quark
mass ratio to ml/ms = 1/10 leads to a constant ratio between mπ and mK

of mπ/mK = 0.435(2) (p4) and 0.437(3) (asqtad). Tuning m̂s such that
the kaon adopts its physical value then leads to a Goldstone mass of about

1 In the staggered fermion formulation only one of the light quark pseudo-scalar states
has a mass vanishing in the chiral limit. The other states have masses of O(a2) which
vanish only in the continuum limit.
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220 MeV for the p4 action2. In these fine-tunings the parameters rn that
characterize the shape of the static quark potential,(

r2dVq̄q(r)
dr

)
r=r0

= 1.65 ,
(
r2dVq̄q(r)

dr

)
r=r1

= 1.0 , (1)

were used as physical scales3. The ratio r0/r1 has been determined in the
two discretization schemes consistently, r0/r1 = 1.4636(60) (p4 [3]) and
1.474(7)(18) (asqtad [8]). Finally, to determine the scales r0 and r1 and the
temperature in physical units (MeV) we have related them to properties of
the bottomonium spectrum and use the value r0 = 0.469(7) fm determined
from the Υ (2S − 1S) splitting in calculations with the asqtad action [9].

2.2. The trace anomaly

The starting point for the computation of pressure end energy density is
the trace anomaly

Θµµ
T 4

=
ε− 3p
T 4

= T
∂

∂T

(
p/T 4

)
, (2)

where it is understood that UV divergences are removed by subtracting the
corresponding zero temperature value. On our line of constant physics the
trace anomaly is obtained as the expectation value

Θµµ(T )
T 4

= −Rβ(β)N4
τ

(〈
dS̄

dβ

〉
T

−
〈
dS̄

dβ

〉
T=0

)
, (3)

where S̄ denotes the average action and Rβ = Tdβ/dT = −adβ/da is the
β function. Like the action, Θ can be separated into a gluonic (ΘG) and a
fermionic (ΘF ) part, with ∆〈...〉 = 〈...〉T=0 − 〈...〉T ,

ΘµµG (T )
T 4

= Rβ N
4
τ∆〈S̄G〉

ΘµµF (T )
T 4

= −Rβ Rm N4
τ

{
2 m̂l ∆〈ψ̄ψ〉l + m̂s∆〈ψ̄ψ〉s

}
, (4)

where SG is the gluon action and 〈ψ̄ψ〉l,s denote the chiral condensates. Rm
is the mass renormalization function m̂(β)Rm(β) = dm̂(β)/dβ. This form

2 The fine-tunings for the two actions have been carried out by different groups inde-
pendently and prior to the collaborative effort reported on here, with the result that
the strange mass is slightly larger for the asqtad action [4].

3 Note that for the comparison of results obtained with different actions, an accurate
value of rn in physical units (1/MeV) is not necessary as only rnT is needed.
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for the trace anomaly holds for fixed ml/ms ratio and for the p4 action; be-
cause of tadpole improvement the formulae for the asqtad action are slightly
more complicated, see [4]. The β function Rβ has been calculated non-
perturbatively from the numerical data on r̂n = rn/a as Rβ/r̂n = dβ/dr̂n.
For that purpose, r̂n was parametrized by the perturbative two-loop β func-
tion modified by a rational function. In the same way, Rm was determined
from the fine-tuned m̂(β) values. Together with high statistics data on the
gluon action and the chiral condensate differences, the results for the trace
anomaly depicted in Fig. 1 were derived.
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Fig. 1. The trace anomaly (ε − 3p)/T 4 calculated on lattices with Nτ = 6 and 8.
Here and in the following figures, the upper x-axis shows the temperature in units
of r0, Eq. (1), while the lower x-axis gives the temperature in units of MeV.

The figure highlights very consistent results between the two discretiza-
tion schemes. The biggest discretization effects occur in the intermediate
temperature regime. These differences are mainly caused by the fermionic
contribution to Θµµ, which accounts for less than 15% of the total value, and
can be traced back to the large nonperturbative contributions to Rm at low
β values [4].

The results for the low as well as the high temperature regime are shown
in more detail in Fig. 2. At low T the differences between Nτ = 6 and 8 are
mainly due to a shift of the crossover temperature of about 5–7MeV. For
comparison the figure also includes the predictions of the hadron resonance
gas (HRG) model [10] which has been quite successful in characterizing the
particle abundancies observed in heavy ion collisions. It remains to be seen
whether the observed discrepancies to the HRG are due to residual quark
mass and discretization effects or whether they hint at a genuine difference.



The Equation of State From Lattice QCD 615

0

1

2

3

4

5

6

7

8

 130  140  150  160  170  180  190  200

0.32  0.36  0.40  0.44  0.48

T [MeV] 

Tr0 
(ε-3p)/T

4
 

asqtad: N
τ
=8

6
p4: N

τ
=8

6

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

 300   400   500   600   700

0.8 1.0 1.2 1.4 1.6

T [MeV] 

Tr0 
(ε-3p)/T

4
 

p4: N
τ
=4

6

8
asqtad: N

τ
=6

8

Fig. 2. The trace anomaly at low (left) and high temperatures (right). At low T ,
solid lines show interpolation curves for the p4 action. The other curves give the
trace anomaly calculated in a hadron resonance gas model with two different cuts
for the maximal mass, mmax = 1.5GeV (dashed-dotted) and 2.5GeV (dashed).
At high T , the curves show fits to the data based on Eq. (5).

At high temperature (ε − 3p)/T 4 drops quickly and eventually approaches
zero ∼ g4(T ) ∼ 1/ ln2(T/Λ). However, in the investigated temperature
range we observe a stronger decay of the trace anomaly. We, therefore, fit
the data by (

ε− 3p
T 4

)
high−T

=
3
4
b0g

4 +
d2

T 2
+
d4

T 4
, (5)

where the first term gives the leading order perturbative result and the
other terms parametrize nonperturbative corrections as inverse powers of
T 2. While the temperatures reached are not large enough to identify the
logarithmic T dependence, the fit without the perturbative contribution de-
scribes the data very well.

2.3. Pressure, energy and entropy

The pressure is obtained from the trace anomaly by integrating Eq. (2)
over temperature,

p(T )
T 4
− p(T0)

T 4
0

=

T∫
T0

dT ′
1
T ′5

Θµµ(T ′) . (6)

Here T0 is an arbitrary temperature value in the low temperature regime
which has been chosen as T0 = 0 where p = 0. As an estimate of the
systematic effects we also used T0 = 100MeV and the HRG pressure value
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at this temperature as the starting point for the integration. The difference
is shown as the black box in Fig. 3 (left). With pressure and ε − 3p at
hand one can compute energy (ε) and entropy density (s = (ε+p)/T ) which
are also shown in Fig. 3. Both quantities show a rapid increase in a small
temperature range and approach the Stefan–Boltzmann limit from below
rather slowly. Based on the small differences between the two actions and
the different Nτ values we conclude [4] that this behavior is describing the
EoS at high temperatures very well, with deviations from the continuum
limit of at most 5% at T ≥ 200MeV.
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Fig. 3. Energy density and three times the pressure (left) and the entropy density
(right). The black bar at high temperature in the left plot indicates the systematic
shift of data that would arise from matching to a hadron resonance gas at T =
100MeV. The bands indicate the temperature region 185 MeV < T < 195 MeV.

2.4. Deconfinement and chiral symmetry

The rapid rise of the energy and entropy density in a narrow temperature
interval is already reflecting the release of many new degrees of freedom,
i.e. deconfinement. The genuine order parameter for this transition is the
Polyakov loop but strictly so only for infinitely heavy quarks. In the presence
of quarks with finite mass the Polyakov loop seizes to be an order parameter
in the sense of detecting the spontaneous breakdown of a global symmetry,
here the center symmetry of the gauge group. Still, it is related to the free
energy FQQ̄(R) of a static QQ̄ pair at distance R,

Lren(T ) = exp
(
−FQQ̄(R→∞, T )/2T

)
(7)

after multiplicative renormalization [11]. As Fig. 4 (left) shows, also at small
quark masses the Polyakov loop exhibits a marked rise in the same T interval
where we observe changes in the EoS.
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The transition to the quark–gluon plasma is expected to also restore
chiral symmetry. In the chiral limit a genuine order parameter for this
transition is the chiral condensate, vanishing in the phase of chiral symmetry
restoration. Away from the chiral limit, chiral symmetry is explicitly broken
by the nonvanishing quark mass. Additionally, the condensate receives an
additive contribution which diverges quadratically in the continuum limit
and is proportional to the quark mass. In order to remove this UV divergence
we use the subtracted condensate [3]

∆ l,s(T ) =
〈ψ̄ψ〉l,T −

ml

ms
〈ψ̄ψ〉s,T

〈ψ̄ψ〉l,0 −
ml

ms
〈ψ̄ψ〉s,0

, (8)

where the denominator at T = 0 cancels the multiplicative renormalization
factor. This quantity is shown in Fig. 4 (right) where the Nτ = 6 data
have been shifted by 7 and 5 MeV, respectively to account for a shift in the
crossover temperature. As the figure shows, the chiral condensate drops in
the same temperature region where the Polyakov loop as well as e.g. the
energy density rise. The data thus indicate that an approximate restoration
of chiral symmetry takes place in the same temperature interval as decon-
finement.
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Fig. 4. Left: The renormalized Polyakov loop. Right: The subtracted chiral con-
densate normalized to the corresponding T = 0 values. The data for Nτ = 6 have
been shifted by −7MeV (asqtad) and −5MeV (p4).

3. Fluctuations and correlations

At non-vanishing chemical potentials µu,d,s for u, d and s quarks, the
pressure can be obtained from a Taylor expansion [12] in the potentials,

p

T 4
=
∑
i,j,k

cijk(T )
(µu
T

)i (µd
T

)j (µs
T

)k
. (9)
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While this approach allows to address the EoS at least at small values for
the potentials, the Taylor coefficients also give access to fluctuations and
correlations of certain quantum numbers at µi = 0. These quantities probe
deconfinement aspects of the QCD transition and are related to event-by-
event fluctuations in heavy ion collisions [13,14].

In Fig. 5 we show the results for the light and strange quark number
susceptibilities, χl = 2c200 and χs = 2c002, respectively, where the u and d
quark potentials have been set equal throughout this paper. The data ex-
hibit a rapid rise in the same temperature interval where also energy density,
chiral condensate and Polyakov loop show drastic changes. The quadratic
light quark fluctuations, χl, rapidly approach the Stefan–Boltzmann limit
while this approach is slower for the heavier strange quarks. Note that at
low temperature χs receives contributions only from the lightest strange par-
ticles and therefore is not sensitive to the singular behavior of the partition
function in the chiral limit.
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Fig. 5. The quadratic fluctuations χi for light (left) and strange (right) quark
number on Nτ = 6 and 8 lattices for the asqtad and the p4 fermion action.

The coefficients cijk of the expansion (9) in the quark chemical potentials
are related [5] to the coefficients χBQSijk of a similar expansion in the potentials
for baryon number B, strangeness S and electric charge Q. The ratios of
quartic and quadratic fluctuations of B and S are shown in Fig. 6 and
compared with the results from the HRG and the Stefan–Boltzmann values.
We plot ratios because in the HRG they are much less sensitive to details of
the hadron spectrum. In fact, in the Boltzmann approximation to the HRG
model, i.e. considering all baryons as heavy on the temperature scale, χB4 /χB2
is independent of the hadron masses and equals 1. This is reasonably well
reproduced by the lattice data at low temperature. Note however the rise of
the ratio in the vicinity of the transition which is expected to become more
pronounced in the chiral limit. Even within the Boltzmann approximation
the structure of the HRG is more complicated in the strange (and charged)
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Fig. 6. The ratios of fourth and second order cumulants for baryon number (left)
and strangeness (right) obtained on Nτ = 4 and 6 lattices with the p4 action. The
curves depict the HRG predictions.

sector. In these cases multiply strange (or charged) hadrons contribute and
enhance the quartic fluctuations. This qualitative feature is also indicated
by the data.

At temperatures above 1.5Tc the analysis of the fluctuations, i.e. their
rapid approach to the Stefan–Boltzmann values already suggests light and
strange quarks as the carriers of conserved quantum numbers. As a further
test one may study correlations between the different charges [14, 15]. Re-
sults for correlations of B with Q and S are shown in Fig. 7. Here, at low
temperature only strange or electrically charged hadrons contribute to the
numerators. Hence, the ratio χBQ11 approaches 1/2 at T = 0 because neu-
trons are not electrically charged. Similarly, χBS11 becomes zero in the same
limit as the lightest baryons do not carry strangeness. In the high tempera-
ture limit we have two quarks with electric charge −1/3 and one with +2/3
thus giving zero in the BQ and 1 in the BS correlation. These values are
indeed rapidly approached by the data above the transition temperature.
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Fig. 7. Correlations of baryon number with electric charge (left) and strangeness
(right). The data have been normalized to the quadratic fluctuations of baryon
number and are compared to predictions of the HRG.
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In summary, we conclude that already at rather low temperatures of
about 1.5 times the transition temperature fluctuations and correlations of
conserved charges are well described by an ideal massless quark gas. In
the hadronic regime the HRG provides a qualitative description of the data.
However, there are indications from higher moments that the HRG fails in
the vicinity of the transition.

While the presented analyses have been carried out with light quarks
that are one tenth of the strange quark mass, calculations with physical light
quark masses and smaller lattice spacings are needed to gain deeper insight
into the range of applicability of the HRG at low temperatures and into
nonperturbative features of QCD in the transition region. For the latter, it
will also be interesting to lower the light quark masses beyond their physical
values to eventually study critical behavior [16] in the approach to the chiral
limit.

I wish to thank the organizers for the kind invitation to an interesting
and charming XXVI Max-Born symposium.
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