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Some results about dissipative processes in superfluids are presented.
We focus on fermionic superfluidity and restrict our analysis to the contri-
bution of phonons to bulk viscosity, shear viscosity and thermal conductiv-
ity. At sufficiently low temperatures phonons give the dominant contribu-
tion to the transport coefficients if all the other low energy excitations of
the system are gapped. We first consider a system of cold fermionic atoms
close to the unitarity limit. Then we turn to the superfluid phase of quark
matter that may be realized at high baryonic density.

PACS numbers: 47.37.+q, 97.60.Jd, 21.65.Qr

1. Introduction

The condition for superfluidity and the hydrodynamic equations govern-
ing its normal and superfluid components have been derived by Landau in
his pioneering work [1]. Superfluidity is a property of quantum fluids re-
lated with the existence of low energy excitations that satisfy the Landau’s
criterion for superfluidity [1–3]

Min
ε(p)
p
6= 0 , (1)

where ε(p) is the dispersion law of the excitation.
In general, superfluidity is due to the appearance of a condensate which

spontaneously breaks a global symmetry of the system. As a consequence, in
the low energy spectrum one has a Nambu–Goldstone boson, the phonon ϕ,
with a linear dispersion law that satisfies Eq. (1).
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Superfluidity was first discovered in 4He, which becomes a frictionless
fluid when cooled at temperatures below 2.17 K [2,4]. The superfluid prop-
erty of 4He is due to the Bose–Einstein condensation of the bosonic atoms in
the lowest quantum state; thus quantum effects become macroscopically ob-
servable. Fermionic systems can become superfluid as well. According with
the Cooper theorem, fermionic superfluidity takes place in quantum degen-
erate systems when the interaction between neutral fermions is attractive
and the temperature is sufficiently low. In this case one has the formation
of a di-fermion condensate that breaks a global continuous symmetry.

We discuss the hydrodynamic equations of superfluids focusing on two
quite interesting fermionic systems. First, we consider trapped cold atomic
gases [5] in the region of infinite scattering length (the so-called unitarity
limit). Then, we turn to cold relativistic quark matter at extremely high
baryonic densities in the color–flavor locked (CFL) phase [6]. These two
phases of matter are quite different, however they share an important prop-
erty: both systems are (approximately) scale invariant, and their properties
do not depend on the detailed form of the interaction.

The hydrodynamic equations governing the fluctuations of a superfluid
are essentially different from standard fluid equations. In a superfluid there
are two independent motions, one normal and the other superfluid. The
transport properties depend on the shear viscosity coefficient, η, on three
independent bulk viscosity coefficients, ζ1, ζ2, ζ3, and on the thermal con-
ductivity κ. These quantities can be understood as phenomenological co-
efficients which relate the rate of change of some quantity with the corre-
sponding affinity [7]. The requirement that the dissipative processes lead
to positive entropy production imposes that κ, η, ζ2, ζ3 are positive and that
ζ2

1 ≤ ζ2ζ3. The bulk viscosity coefficient ζ2 plays the role of the standard
bulk viscosity coefficient. On the other hand, ζ1 and ζ3 provide a coupling
between the hydrodynamic equations of the two components. The friction
forces due to bulk viscosities can be understood as drops, with respect to
their equilibrium values, in the main driving forces acting on the normal
and superfluid components. These forces are given by the gradients of the
pressure P and of the chemical potential µ. One can write in the co-moving
frame

P = Peq − ζ1 div(V 2w)− ζ2 div u , (2)
µ = µeq − ζ3 div(V 2w)− ζ1 div u , (3)

where Peq and µeq are the equilibrium pressure and chemical potential, V
is a quantity proportional to the quantum condensate, ωµ = − (∂µϕ+ µuµ)
and uµ is the velocity of the fluid.

In a conformally invariant system it has been shown in Ref. [8] that
ζ1 = ζ2 = 0. However, ζ3, κ and η cannot be determined by the same
symmetry reasoning. Regarding the shear viscosity, it is worth mentioning
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that a lower bound for the shear viscosity to entropy ratio has been derived
employing the AdS/CFT correspondence in the strong coupling limit within
the N = 4 super-symmetry Yang Mills theory [9], obtaining η/s = 1/4π.

In the low temperature regime, T � Tc, where Tc is the critical tempera-
ture for superfluidity, the transport properties of superfluids are determined
by phonons. The contribution of other degrees of freedom is thermally sup-
pressed. In this case one can show that ζ2

1 = ζ2ζ3, meaning that there are
only two independent bulk viscosity coefficients and that one of the rela-
tion for positive entropy production is saturated; the system tends toward
the state where the velocity of the superfluid component and the velocity
of the normal component are parallel and bulk viscosity does not lead to
dissipation.

For T � Tc the transport coefficients strongly depend on the phonon
dispersion law. The shear viscosity is the only transport coefficient that
does not vanish for phonons with a linear dispersion law. But, for the bulk
viscosities and for the thermal conductivity one has to include the term cubic
in momentum

ε(p) = csp+Bp3 +O
(
p5
)
. (4)

Moreover, in the computation of the bulk viscosity one has to consider the
processes that change the number of phonons. The parameter B determines
whether some processes are or are not kinematically allowed. For B > 0
the leading contribution comes from the Beliaev process φ → φφ. In the
opposite case the Beliaev process is not kinematically allowed and one has
to consider the processes φφ→ φφφ.

2. Cold atoms at unitarity

Experiments with trapped cold atomic gases have reached an extremely
high level of accuracy. The system consists of fermionic atoms, like 6Li
or 40K, in two different hyperfine states. The fermions in the two hyper-
fine states have opposite spin and the interaction between them can be
tuned by means of a magnetic-field Feshbach resonance [10]. The strength
of the interaction between atoms depends on the applied magnetic field and
can be measured in terms of the s-wave scattering length. By varying the
magnetic-field controlled interaction, fermionic pairing is observed to un-
dergo the Bose–Einstein condensate (BEC) to Bardeen–Cooper–Schrieffer
(BCS) crossover. In the weak coupling BCS region the system is charac-
terized by the formation of Cooper pairs. In the strong coupling limit the
system can be described as a BEC dilute gas. The unitary limit is reached
when the magnetic field is tuned at the Feshbach resonance [11], where the
two-body scattering length diverges.
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Far from unitarity, the properties of the system are qualitatively and
quantitatively well understood using mean field theory [12]. However, the
mean field expansion is not reliable close to unitarity because the scatter-
ing length is much larger than the inter-particle distance and there is no
small parameter in the Lagrangian to expand in. Therefore fluctuations
may change the mean field results substantially.

Close to the unitarity region quantitative understanding of the phases
comes from Monte Carlo simulations [13], or considering the expansion in a
small parameter that comes from the generalization to an arbitrary number
N of spins [14], or considering an ε = 4− d expansion and then extrapolating
the results to d = 3 dimensions.

A different method comes from considering that at sufficiently low tem-
perature the only active degrees of freedom are the phonons (see how-
ever [15]). The interesting point is that the effective Lagrangian for phonons
can be determined from the pressure and by demanding non-relativistic gen-
eral coordinate invariance and conformal invariance [16]

Leff = c0m
3/2X5/2 + c1m

1/2 (∇X)2

√
X

+
c2√
m

(
∇2φ

)2√
X , (5)

where c0, c1 and c2 are three dimensionless and universal constants. From
the expression above one can determine the coefficients appearing in the
dispersion law of phonons obtaining

cs =

√
2µ
3

and B = −π2cs

√
2ξ
(
c1 +

3
2
c2

)
1
k2

F

. (6)

The hydrodynamic equations describing the behavior of the system are

∂ji
∂t

+ ∂j(Πij + τij) = 0 ,

∂vs
∂t

+∇
(
µ+

vs
2

2
+ h

)
= 0 , (7)

∂E

∂t
+∇ · (Q + Q′) = 0 ,

where
Q′ = q + h(j − ρvn) + τ · vn (8)

and τij , h and q are small dissipative terms that close to equilibrium are
given by

τij = −η
(
∂jvni+∂ivnj− 2

3δij∇ · vn
)
− δij(ζ1∇ · (ρs(vs − vn)) + ζ2∇ · vn) ,

h = −ζ3∇ · (ρs(vs − vn))− ζ1∇ · vn ,
q = −κ∇T .
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The various transport coefficients can be determined starting from the
phonon Lagrangian in Eq. (5), considering the appropriate phonon scatter-
ing process. The shear viscosity of a unitary superfluid at low temperature
has been computed in Ref. [17] obtaining that

η

s
' 7.7× 10−6 ξ5T

8
F

T 8
, (9)

where ξ = 0.2− 0.3 and TF is the Fermi temperature.
The thermal conductivity from phonons of a unitary gas has not been

determined, yet.
Regarding the bulk viscosity one has to consider phonon number chang-

ing processes. For cold atoms at unitarity B > 0 and the Beliaev process is
kinematically allowed. In Ref. [18] it has been verified that in the conformal
limit ζ1 = ζ2 = 0, while the remaining bulk viscosity coefficient evaluated
within kinetic theory in the relaxation time approximation turns out to be

ζ3 ' 3695.4
(
ξ

µ

)9/2
(
c1 + 3

2c2

)2
m8

T 3 +O
(
T 5
)
. (10)

The presence of non-vanishing transport coefficients leads to experimen-
tally detectable effects. The damping of radial breathing mode depends on
the bulk and shear viscosity coefficients. However, since ζ2 vanishes, the
bulk viscosity enters only in presence of a difference of velocity between the
normal and the superfluid component and is in general negligible. In order
to determine ζ3 one should produce oscillations where the normal and su-
perfluid component oscillate out of phase. The transport coefficients enter
also into the damping rate for the propagation of first and second sound
in a superfluid [2]. The damping of first sound, α1, depends on the shear
viscosity and on ζ2, whereas the damping of second sound, α2, depends on
all the dissipative coefficients.

3. Quark matter at extremely high baryonic density

Relativistic superfluids might be realized in the interior of neutron stars
where the temperature is low and the typical energy scale of particles is ex-
tremely high. In particular, in the inner crust of neutron stars the attractive
interaction between neutrons can lead to the formation of a BCS conden-
sate. Moreover, if deconfined quark matter is present in the core of neutron
stars it will very likely be in a color superconducting phase [19]. Quan-
tum Chromodynamics (QCD) predicts that at asymptotically high densities
quark matter is in the color–flavor locked phase. In this phase up, down
and strange quarks of all three colors pair forming a difermion condensate
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that is antisymmetric in color and flavor indices. CFL quark matter is a
superfluid as well, because by picking a phase its order parameter breaks
the quark-number U(1)B symmetry spontaneously.

There are different formulations of the non-dissipative hydrodynamical
equations of a relativistic superfluid [20,21]. They were derived as relativis-
tic generalizations of Landau’s two-fluid model of non-relativistic superfluid
dynamics. The dissipative terms which enter into the relativistic hydrody-
namical equations were derived in [22]. As it occurs in the non-relativistic
case, for a relativistic superfluid one can define the thermal conductivity,
κ, the shear viscosity coefficient, η, and three independent bulk viscosity
coefficients, ζ1, ζ2, ζ3.

The dispersion law of phonons in the CFL phase has been derived in [23],
and one has

cs =

√
1
3

and B = − 11cs

540∆2
. (11)

In the asymptotic high density limit, the gap, ∆, can be computed from
QCD [24]

∆ ' b0µg−5 exp
(
− 3π2

√
2g

)
, (12)

where b0 = 512π4(2/3)5/2 exp
(
−π2+4

8

)
and g is the QCD gauge coupling

constant. At very high chemical potentials, one can neglect quark masses,
as far as mq � µ; moreover the coupling constant is small, g(µ) � 1, and
one can assume that CFL is approximately scale invariant.

A first study of the shear viscosity and of the contribution to the bulk
viscosity coefficients due to phonons has been presented in Refs. [25, 26].
Beside phonons, kaons may give a sizable contribution to the transport co-
efficients. The contribution of kaons to ζ2 has been studied in Ref. [27].
There is still no computation of the contribution of kaons to the remaining
bulk viscosity coefficients.

Considering only the contribution of phonons one has that ζ1 = ζ2

= 0, while the third bulk viscosity coefficient does not vanish and depends
parametrically on the physical scales as

ζ3 ∼
1
T

µ6

∆8
. (13)

We remark that these are only approximated results that arises in the g � 1
limit, after neglecting the running of the QCD gauge coupling constant and
the effect of the strange quark mass.

The contribution to thermal conductivity due to phonons and kaons has
recently been studied in Ref. [28]. The thermal conductivity from phonons
turns out to be dominant and given by:
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κ ∼ 6× 10−2 µ
8

∆6
, (14)

whereas the shear viscosity from phonons as determined in [25] is given by

η ' 1.3× 10−2 µ
8

T 5
. (15)

If superfluidity occurs in the interior of compact stars, it should be pos-
sible to find signatures of its presence through a variety of astrophysical phe-
nomena. For example, the most natural explanation for the sudden spin-up
of pulsars [29], the so-called glitches, relies on the existence of a superfluid
component in the interior of the star, rotating much faster than the outer
solid crust. After the unpinning of the superfluid vortices, there is a transfer
of angular momentum from the interior of the star to the outer crust, giving
rise to the the pulsar glitch.

Another possibility to detect or discard the presence of relativistic su-
perfluid phases consists in studying the evolution of the r-mode oscillations
of compact stars [30]. R-modes are non-radial oscillations of the star with
the Coriolis force acting as the restoring force. They provide a severe limita-
tion on the rotation frequency of the star through coupling to gravitational
radiation (GR) emission. When dissipative phenomena damp these r-modes
the star can rotate without losing angular momentum to GR. If dissipative
phenomena are not strong enough, these oscillations will grow exponentially
and the star will keep slowing down until some dissipation mechanism is able
to damp the r-mode oscillations. Therefore, the study of r-modes is useful in
constraining the stellar structure and can be used to rule out some matter
phases. For such studies it is necessary to consider in detail all the dissipative
processes and to compute the corresponding transport coefficients.

4. Mutual friction

Beside shear and bulk viscosity in a rotating superfluid one has to con-
sider one more dissipative process. This is due to the scattering of phonons
off superfluid vortices and leads to the so-called mutual friction force between
the normal and the superfluid components. This force can be evaluated from
the differential cross-section per unit vortex length for the phonon–vortex
scattering process. In case the phonons form a diluted gas, one has that

dσ

dθ
=

cs

2πE
cos2 θ

tan2(θ/2)
sin2 πE

Λ
, (16)

where θ is the scattering angle, E is the phonon energy and 1/Λ =
(
1− c2

s

)
[k/(2πc2

s )], with k is the quantized circulation.
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5. Addendum: Gravity analogs

The evaluation of the cross-section for the phonon–vortex scattering can
be determined employing the gravity analogs technique. According with
Unruh [31], the effective action of a phonon propagating in a fluid is equiva-
lent to the action of a scalar field in a curved background. This analogy can
be used in two different ways; to study some aspects of general relativity,
e.g. black hole evaporation, from the analogous hydrodynamical system; to
study some properties of hydrodynamics using results of general relativity.
In our case we want to determine the phonon–vortex cross-section in the
CFL phase, using the analogous results obtained in general relativity [32].
In order to do this we separate the Nambu–Goldstone boson field as

ϕ(x) = ϕ̄(x) + φ(x) , (17)

where ϕ̄(x) is a classical field describing the bulk motion of the superfluid
and φ(x) is the fluctuations on the top of the superfluid. Thus we can write

S[ϕ] = S[ϕ̄] +
1
2

∫
d4x

∂Leff

∂(∂µϕ)∂(∂νϕ)

∣∣∣∣∣
ϕ̄

∂µ φ∂νφ+ · · · (18)

and introducing the acoustic metric

gµν = ηµν + (c2
s − 1)vµvν , (19)

we have the action for the phonon field

S[φ] =
1
2

∫
d4x
√
−g gµν∂µ φ∂νφ . (20)

When the classical background has a vortex configuration it results in a
non-trivial metric. Then one can obtain the vortex-phonon cross-section
studying the propagation of the scalar field in this metric [33].

This work was supported by the Spanish grant FPA2007-60275.
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