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The equation of state of nuclear matter at finite temperature and den-
sity with various proton fractions is considered at subsaturation densities
and finite temperatures. The formation of few-body correlations, in par-
ticular bound clusters is taken into account considering free nucleons, as
well as clusters, like quasiparticles. Medium modification of the clusters
is described by self-energy and Pauli blocking effects. Benchmarks such
as the nuclear statistical equilibrium, virial expansion and the relativistic
mean field approximation are considered. An interesting effect is the for-
mation of a two-nucleon or four-particle quantum condensate, showing the
crossover from Cooper pairing to Bose–Einstein condensation. The result-
ing thermodynamic properties are of interest for heavy-ion collisions and
astrophysical applications. Quantum condensates and the Mott effect are
also of relevance for the structure of finite nuclei, especially dilute excited
states like the Hoyle state of 12C.

PACS numbers: 21.65.–f, 21.45.–v

1. Introduction

The equation of state (EoS) in the subsaturation region, the composi-
tion and possible occurrence of phase transitions in nuclear matter are widely
discussed topics not only in nuclear theory, but are also of great interest in
astrophysics and cosmology, see [1]. Experiments on heavy ion collisions,
performed over the last decades, gave new insight into the behavior of nu-
clear systems in a broad range of densities and temperatures, see [2]. The
observed cluster abundances, their spectral distribution and correlations in
momentum space can deliver information about the state of dense, highly
excited matter.
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Within a quantum statistical approach to the thermodynamic properties
of nuclear matter, the main quantity to be evaluated is the single-nucleon
self-energy. Different approximations are obtained by partial summations
within a diagram representation. The formation of bound states is taken into
account considering ladder approximations [3], leading in the low-density
limit to the solution of the Schrödinger equation. The effects of the medium
can be included in a self-consistent way within the cluster-mean field ap-
proximation [4], where the influence of the correlated medium on the single
particle states as well as on the clusters is considered in first order with
respect to the interaction. As a point of significance, besides the single-
particle self-energy shifts of the constituents, the bound state energies are
also modified by the Pauli blocking due to the correlated medium. Due to
the in-medium quasiparticle shift, bound states will merge with the contin-
uum of scattering states at increasing density and are dissolved. Within a
generalized Beth–Uhlenbeck approach, the relation to the nuclear statistical
equilibrium (NSE), to the extended virial expansions [5] and to the Brueck-
ner Hartree–Fock and relativistic mean-field theory (RMF) can be given.
An extended discussion of the two-particle problem is found in Refs. [6, 7].

The EoS can be applied to different situations. In astrophysics, the rela-
tivistic EoS of nuclear matter for supernova explosions was investigated re-
cently [8]. If nuclei are considered as inhomogeneous nuclear matter, within
a local density approximation the EoS can serve for comparison to estimate
the role of correlations. In nuclear reactions a nonequilibrium theory is
needed, but within a simple approach such as the freeze out concept or the
coalescence model the results from the EoS may be used to describe heavy
ion reactions. The EoS including the contribution of light clusters has been
evaluated recently [9], and the inclusion of heavier clusters is under consid-
eration [10]. As example, the symmetry energy at subsaturation densities is
sensitive to the formation of clusters [2].

The inclusion of light cluster formation describing nuclear matter has
some yet unsolved implications to be discussed here. The account of corre-
lations means, besides the contribution of bound states that can be treated
in quasiparticle approximation, also the contribution of scattering states.
The EoS contains contributions from the scattering phase shifts as seen,
for example, from the Beth–Uhlenbeck formula [5, 6]. In contrast, cluster
yields from HIC do not contain the scattering contributions that quickly
decay during the nonequilibrium expansion process. Only the bound states
remain because ternary particles are needed for energy and momentum con-
servation.

There is not unique definition of a bound state and composition in a dense
system. From the spectral function in the corresponding A-particle channel,
a peak structure can be used to define the quasiparticles, but due to the
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interactions in dense systems, sharp peaks in the spectral function become
broadened and can become resonances in the continuum. We introduce
the spectral function in the following section. The quasiparticle approach
is introduced to reproduce significant contributions of the clusters to the
total nucleon density. Further items to be discussed are the occurrence of
quantum condensates, phase instabilities, the role of higher clusters, and the
treatment of alpha matter at low temperatures and densities.

2. Quantum statistical approach to the equation of state

Using the finite-temperature Green function formalism, a non-relativistic
quantum statistical approach can be given to describe the equation of state
of nuclear matter including the formation of bound states [3, 6].

The single-nucleon spectral function S1(1, ω) is related to the self-energy
Σ(1, z) according to

S1(1, ω) =
2ImΣ(1, ω − i0)

[ω − E(1)− ReΣ(1, ω)]2 + [ImΣ(1, ω − i0)]2
, (1)

where E(1) = p2
1/(2m1) is the kinetic energy of the free nucleon. The

solution of the relation

Equ
1 (1) = E(1) + ReΣ [1, Equ

1 (1)] (2)

defines the single-nucleon quasiparticle energies Equ
1 (1) = E(1) + ∆ESE(1).

In mean-field approximations for the self-energy, the EoS for an ideal Fermi
gas of quasiparticles results. Expressions for the single-nucleon quasiparticle
energy Equ

τ (p) can be given by the Skyrme parametrization or by more so-
phisticated approaches such as relativistic mean-field approaches [11,12] and
relativistic Dirac–Brueckner Hartree–Fock calculations. The fit to properties
of nuclei implies the appropriate description of nuclear matter near satura-
tion density.

As shown in Refs. [3,6], the bound state contributions are obtained from
the poles of Im Σ(1, z) which cannot be neglected in expanding the spectral
function with respect to Im Σ(1, z). A cluster decomposition of the self-
energy has been proposed, see Ref. [4]. The self-energy is expressed in terms
of the A-particle Green functions which contain the A-particle wave function
ψAνP (1 . . . A) and the corresponding eigenvalues Equ

A,ν(P ) from solving the
in-medium Schrödinger equation, see below. P denotes the center of mass
momentum of the A-nucleon system, the internal quantum number ν refers
to bound states as well as to scattering states.

Considering only the bound-state contributions, we obtain the result

ntot
p (T, µp, µn) =

1
Ω

∑
A,ν,P

ZfA,Z

[
Equ
A,ν(P ;T, µp, µn)

]
,
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ntot
n (T, µp, µn) =

1
Ω

∑
A,ν,P

(A− Z)fA,Z
[
Equ
A,ν(P ;T, µp, µn)

]
,

fA,Z(ω) =
(
exp {β [ω − Zµp − (A− Z)µn]} − (−1)A

)−1 (3)

for the EoS describing a mixture of components (cluster quasiparticles) obey-
ing Fermi or Bose statistics, n(T, µp, µn) = ntot

n (T, µp, µn)+ntot
p (T, µp, µn) is

the total baryon density. To derive the extended Beth–Uhlenbeck formula,
see Ref. [3], we restrict the summation to A ≤ 2, but extend the summa-
tion over the internal quantum numbers ν, not only to excited bound states,
but also the scattering states. Note that at low temperatures Bose–Einstein
condensation may occur.

The NSE is obtained in the low-density limit if the in-medium energies
Equ
A,ν(P ;T, µp, µn) can be replaced by the binding energies of the isolated

nuclei. Recent progress of the description of clusters in low density nuclear
matter [8,12,13] enables us to evaluate the properties of deuterons, tritons,
helions and helium nuclei in a non-relativistic microscopic approach, taking
the influence of the medium into account.

For nuclei imbedded in nuclear matter, an effective wave equation can be
derived, using a quantum statistical approach [3, 13]. The A-particle wave
function ψAνP (1 . . . A) and the corresponding eigenvalues Equ

A,ν(P ) follow
from solving the in-medium Schrödinger equation[

Equ(1) + . . .+ Equ(A)− Equ
A,ν(P )

]
ψAνP (1 . . . A)

+
∑

1′...A′

∑
i<j

[
1− f̃(i)− f̃(j)

]
V (ij, i′j′)

∏
k 6=i,j

δkk′ψAνP (1′ . . . A′) = 0 . (4)

This equation contains the effects of the medium in the single-nucleon quasi-
particle shifts as well as in the Pauli blocking terms. The A-particle wave
function and energy depend on the total momentum P relative to the me-
dium.

The effective Fermi distribution function f̃(1) = (exp {β[Equ(1)− µ̃1]}
+1)−1 contains the non-relativistic effective chemical potential µ̃1. It is de-
termined by the normalization condition that the total proton or neutron
density is reproduced in quasiparticle approximation, ntot

τ =Ω−1
∑

1f̃(1)δτ1,τ
for the particles inside the volume Ω. It describes the occupation of the
phase space neglecting any correlations in the medium. This means that
the nucleons bound in clusters, e.g. deuterons, will also occupy phase space.
The total amount of occupied phase space is correctly given, but the form
factor will deviate from the Fermi distribution as given by the bound state
wave function. A more rigorous treatment can be given within the cluster
mean-field approximation [4, 13].
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The solution of the in-medium Schrödinger equation (4) can be obtained
in the low-density region by perturbation theory. At higher densities, a
variational approach can be used. In particular, the quasiparticle energy of
the A-nucleon cluster with Z protons in the ground state is

Equ
A,ν(P ) = Equ

A,Z(P ) = E
(0)
A,Z +

P 2

2Am
+∆ESE

A,Z(P ) + ∆EPauli
A,Z (P ) + ∆ECoul

A,Z (P ) + . . . (5)

with the cluster binding energy in the vacuum, and the kinetic term, the
self-energy shift ∆ESE

A,Z(P ), the Pauli shift ∆EPauli
A,Z (P ) and the Coulomb

shift.
The self-energy contribution to the quasiparticle shift is determined by

the contribution of the single-nucleon shift

∆ESE
A,Z(0) = (A− Z)∆ESE

n (0) + Z∆ESE
p (0) + ∆ESE,eff.mass

A,Z . (6)

The contribution to the self-energy shift due to the change of the effective
nucleon mass can be calculated from perturbation theory using the unper-
turbed wave function of the clusters [8].

The most important effect in the calculation of the abundances of light
elements comes from the Pauli blocking terms in Eq. (4) in connection with
the interaction potential. This contribution is restricted only to the bound
states so that it may lead to the dissolution of the nuclei if the density of
nuclear matter increases. The corresponding shift

∆EPauli
A,Z (P ) ≈ ∆EPauli

A,Z (0) exp
(
− P 2

gA,Z

)
(7)

can be evaluated in perturbation theory provided the interaction potential
and the ground state wave function are known. A variational approach gives
the dispersion gi(T, n, Yp) [9, 12].

The shift of the binding energy of light clusters at zero total momentum
has been calculated recently [13]. The light clusters deuteron (d = 2H),
triton (t = 3H), helion (h = 3He) and the α particle (4He) have been con-
sidered. The interaction potential and the nucleonic wave function of the
few-nucleon system have been fitted to the binding energies and the rms
radii of the corresponding nuclei. With the neutron number Ni = Ai − Zi,
it can be written as

∆EPauli
Ai,Zi

(0;np, nn, T ) = − 2
Ai

[Zinp +Ninn] δEPauli
i (T, n) , (8)

where the temperature dependence and higher density corrections are con-
tained in the functions δEPauli

i (T, n) given in Refs. [9, 12].
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3. Contribution of the continuum correlations

Now, the nucleon number densities (3) can be evaluated as in the non-
interacting case, with the only difference that the number densities of the
particles are calculated with the quasiparticle energies. In the light cluster-
quasiparticle approximation, the total densities of neutrons ntot

n = nn +∑
i=d,t,h,αNini and of protons ntot

p = np +
∑

i=d,t,h,α Zini contain the densi-
ties of the free neutrons and protons nn and np, respectively, and the contri-
butions due to the correlations in the corresponding few-nucleon channels.
The summation over the internal quantum number ν, Eq. (3), covers the
bound state part (ground state and possibly excited states) as well as the
contribution of the continuum (for example resonances). Thus, the contri-
bution nd of the deuteron channel is given by the Beth–Uhlenbeck formula
that contains besides the bound state contribution also the contribution of
the scattering states [3, 5, 6].

We suppose that the densities nbound
i give the cluster yields within a

freeze-out approach to heavy ion collisions. In expanding nuclear matter,
continuum correlations such as n–n or p–p will decay. The formation or
decay of a bound state, e.g. in the deuteron channel, demands a further nu-
cleon as spectator to obey energy and momentum conservation. At decreas-
ing density, such processes become suppressed. The continuum correlations
can be included into the free nucleon part nn, np of ntot, bound

n , ntot,bound
p .

A more systematic approach to heavy ion collisions can be given by trans-
port codes based on coupled kinetic equations for the different constituents
of nuclear matter (n, p, d, t, h, α in the case considered here).

For the evaluation of the equation of state, the account of scattering
states needs further consideration. Investigations on the two-particle level
have been performed and extensively discussed [3, 5, 6].

The contribution of scattering states nscatt
i is necessary to obtain the sec-

ond virial coefficient according to the Beth–Uhlenbeck equation, see
Refs. [5, 6]. This leads also to corrections in comparison with the NSE that
accounts only for the bound state contributions, neglecting all effects of scat-
tering states. These corrections become important at increasing tempera-
tures for weakly bound clusters. Thus, the corrections which lead to the
correct second virial coefficient are of importance for the deuteron system,
when the temperature is comparable or large compared with the binding
energy per nucleon.

To take the contributions of these continuum correlations into account,
we propose the following approximation

nscatt
i =

1
Ω

bound∑
P

bi
Equ
i (0)

E
(0)
i

e−P
2/(2AimT )e[(Ai−Zi)(µn−∆ESE

n (0))+Zi(µp−∆ESE
p (0))]/T ,(9)
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where bi(T ) is the second virial coefficient after subtraction of e−E
(0)
i /T − 1.

We have used the values for the deuteron as given in Ref. [5]. Of course,
the inclusion of the scattering states can be improved, e.g. by comparing
with the Beth–Uhlenbeck formula. To approach the low-density limit of the
EoS correctly, one has to reproduce the virial coefficients of the cluster-virial
expansion.

4. α matter and quartetting

In the low-temperature region, below the Mott density the α particles
yield the dominating contribution to the composition of symmetric matter, if
we restrict us to clusters with A ≤ 4. Below densities of the order 10−4 fm−3,
nuclear matter can be considered as ideal mixture of free nucleons and clus-
ters. The interaction between the constituents can be neglected. The mass
action law gives increasing yield of α particles at decreasing temperature
for fixed density, but decreasing bound state concentration for decreasing
density at fixed temperature (entropy dissociation). The ideal mixture of
free nucleons and clusters has to be considered as ideal quantum gas where
the components have a Fermi or Bose distribution function in momentum
space, and Bose–Einstein condensation can occur at low temperatures.

The low-density limit at fixed temperature is the ideal classical nucleon
gas. Corrections are given by the virial expansion. In particular, within
a cluster-virial expansion the empirical scattering phase shifts can be used
to evaluate density corrections for the ideal mixture of the different com-
ponents. Thus, the virial coefficient for α–α interaction is obtained from
the corresponding scattering phase shifts [5]. Alternatively, one can use the
phase shifts to introduce an effective interaction. The corresponding equa-
tion of state was reconsidered recently [14], also taking into account the
formation of a quantum condensate. However, such effective interactions
become questionable if the density is increasing so that the wave functions
of the clusters overlap. Then, Pauli blocking leads to the dissolution of the
clusters.

In our approach, these medium effects are included. Results for the in-
ternal energy per nucleon are shown in Fig. 1. At very low densities, the
internal energy pro nucleon takes the value U = 3

2T for the classical ideal
gas of free nucleons. As soon as cluster are formed, what happens for low
temperatures already at very low densities, the binding energy of the nu-
cleons in clusters determines the internal energy. In the case of α particles
this contribution to the internal energy amounts −7 MeV. It determines the
internal energy at zero temperature in the low-density limit.

With increasing density, the Pauli blocking leads to a reduction of the
binding energy of the α particles and its dissolution. This is the reason
for the increase of internal energy until the Mott density (≈ 0.006 fm−3) is
reached. Above the Mott density, after the bound states are dissolved, the
free nucleon RMF approach gives the behavior of the internal energy.
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Fig. 1. Internal energy of symmetric matter as function of density for different
temperatures. Thin lines: Results of a fully antisymmetrized calculation at T = 0
MeV, considering different clusters [17]. For comparison, values for the ideal gas of
α particles as well as the virial expansion [5] are also shown.

The formation of quantum condensates will give further contributions to
the EoS. However, in the region considered here the formation of quantum
condensates does not appear. On the other hand, quartetting is expected to
occur at low temperatures [15]. With increasing density, due to correlations
the condensate is decreasing [14,16]. First steps to describe the quartetting
at zero temperature have been given in [17]. The quantum condensate of α
particles was discussed recently for finite nuclei [18].

5. Conclusions and outlook

We presented a quantum statistical approach to evaluate the EoS of
warm nuclear matter at subsaturation densities. Investigating the self-
energy within a cluster decomposition, a quasiparticle approach is given
for the free nucleons as well as for the nuclei. The account of medium effects
allows to obtain a general approach that combines different well-known cases
in the low-density region and near saturation density. The role of continuum
correlations is discussed, that contribute to the cluster yields in heavy ion
collisions and to the EoS in different ways.

The approximation of the uncorrelated medium can be improved consid-
ering the cluster mean-field approximation [3,4,13]. This would also improve
the correct inclusion of α matter as discussed here. The formation of quan-
tum condensates (quartetting) and its disappearance with increasing density
demands further investigations.
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We do not consider the formation of heavy clusters here. This limits the
parameter range ntot

n , ntot
p , T in the phase diagram to that area where the

abundances of heavier clusters are small. For a more general approach to
the EoS, which takes also the contribution of heavier cluster into account,
see Refs. [10, 19]. Future work will include the contribution of the heavier
clusters.

Phase separation occurs when thermodynamic stability is violated. If
phase instability occurs, droplet formation has to be considered. Due to
the Coulomb interaction, a neutralizing charged background has to be taken
into account to avoid divergencies in the EoS. Demanding local neutrality,
the Wigner–Seitz approximation can be used for the Coulomb energy. The
determination of the optimal droplet can be performed in the Thomas–Fermi
approximation or the local density approach, but will not detailed here. It
is expected that the formation of droplets corresponds to the account of
higher clusters. The critical point for the phase transition from the nuclear
quantum liquid to nuclear gas is influenced by the formation of clusters [9].
Due to the Coulomb interaction and local neutrality, the phase transition
becomes smooth in the thermodynamic limit.

Phase transitions are of high importance for the evolution the early uni-
verse [20, 21], because they can produce inhomogeneities. To calculate the
primordial distribution of elements, medium effects have to be included if
densities near the saturation density occur. This allows for the primordial
production of heavy elements.

The author is indebted for stimulating discussions and fruitful collabo-
rations with a lot of nuclear physicists, in particular D. Blaschke, C. Fuchs,
Y. Funaki, H. Horiuchi, T. Klaehn, J. Natowitz, S. Schlomo, P. Schuck,
K. Sumiyoshi, A. Tohsaki, S. Typel, H. Wolter, and T. Yamada.

REFERENCES

[1] T. Klähn et al., Phys. Rev. C74, 035802 (2006).
[2] S. Kowalski et al., Phys. Rev. C75, 014601 (2007); J. Natowitz et al.,

arXiv:nucl-th/1001.1102 to be published in Phys. Rev. Lett.
[3] G. Röpke, L. Münchow, H. Schulz, Nucl. Phys. A379, 536 (1982); G. Röpke,

M. Schmidt, L. Münchow, H. Schulz, Phys. Lett. B110, 21 (1982).
[4] G. Röpke, T. Seifert, H. Stolz, R. Zimmermann, Phys. Status Solidi B100, 215

(1980); G. Röpke, M. Schmidt, L. Münchow, H. Schulz, Nucl. Phys. A399,
587 (1983).

[5] C.J. Horowitz, A. Schwenk, Nucl. Phys. A776, 55 (2006).
[6] M. Schmidt, G. Röpke, H. Schulz, Ann. Phys. (NY) 202, 57 (1990).



658 G. Röpke

[7] H. Stein, A. Schnell, T. Alm, G. Röpke, Z. Phys. A351, 295 (1995).
[8] K. Sumiyoshi, G. Röpke, Phys. Rev. C77, 055804 (2008); Phys. Rev. C77,

055804 (2008) [arXiv:0801.0110[astro-ph]].
[9] S. Typel, G. Röpke, T. Klähn, D. Blaschke, H.H. Wolter, Phys. Rev. C81,

015803 (2010) [arXiv:0908.2344[nucl-th]].
[10] M. Hempel, J. Schaffner-Bielich, arXiv:0911.4073[nucl-th].
[11] S. Typel, Phys. Rev. C71, 064301 (2005) [arXiv:nucl-th/0501056].
[12] G. Röpke, Int. J. Mod. Phys., to be published.
[13] G. Röpke, Phys. Rev. C79, 014002 (2009) [arXiv:0810.4645[nucl-th]].
[14] S. Misicu, F. Carstoiu, Phys. Lett. B682, 33 (2009)

[arXiv:0909.1719[nucl-th]].
[15] G. Röpke, A. Schnell, P. Schuck, P. Nozières, Phys. Rev. Lett. 80, 3177 (1998).
[16] Y. Funaki, H. Horiuchi, G. Röpke, P. Schuck, A. Tohsaki, T. Yamada, Phys.

Rev. C77, 064312 (2008).
[17] H. Takemoto, M. Fukushima, S. Chiba, H. Horiuchi, Y. Akaishi, A. Tohsaki,

Phys. Rev. C69, 035802 (2004).
[18] A. Tohsaki, H. Horiuchi, P. Schuck, G. Röpke, Phys. Rev. Lett. 87, 192501

(2001); Y. Funaki et al., Phys Rev. C80, 064326 (2009).
[19] G. Röpke, M. Schmidt, H. Schulz, Nucl. Phys. A424, 594 (1984).
[20] G. Röpke, Clusters in Nuclear Matter, in: Condensed Matter Theories,

vol. 16, Ed. S. Hernandez, J.W. Clark, Nova Sciences Publ., New York 2001.
[21] G. Röpke, Phys. Lett. B185, 281 (1987).


