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A new phase of dense QCD proposed in the limit of large number of
colors, Quarkyonic Phase, is discussed in chiral approaches. The interplay
between chiral symmetry breaking and confinement together with the Nc

dependence of the phase diagram are dealt with in the PNJL model. We
also discuss a possible phase at finite density where chiral symmetry is
spontaneously broken while its center remains unbroken. The quark num-
ber susceptibility exhibits a strong enhancement at the restoration point
of the center symmetry rather than that of the chiral symmetry. This is
reminiscent of the quarkyonic transition.

PACS numbers: 11.30.Rd, 11.30.Ly, 25.75.Nq, 21.65.Qr

1. Introduction

Model studies of dense baryonic and quark matter have suggested a rich
phase structure of QCD at temperatures and quark chemical potentials being
of order ΛQCD. Our knowledge on the phase structure is however still limited
and the description of the matter around the phase transitions does not reach
a consensus because of the non-perturbative nature of QCD [1].

Possible phases and spectra of excitations are guided by symmetries and
their breaking pattern in a medium. Dynamical chiral symmetry breaking
and confinement are characterized by strict order parameters associated with
global symmetries of the QCD Lagrangian in two limiting situations: the
quark bilinear 〈q̄q〉 in the limit of massless quarks, and the Polyakov loop
〈Φ〉 in the limit of infinitely heavy quarks. The system at finite density could
also allow other symmetries, which are not manifest in the QCD Lagrangian
but might emerge in a dense medium. In this contribution we discuss the
phases in dense QCD from chiral models.
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2. From Nc = ∞ to Nc = 3

A novel phase of dense quarks, Quarkyonic Phase, was recently proposed
based on the argument using large Nc counting where Nc denotes number of
colors [2–4]: in the large Nc limit there are three phases which are rigorously
distinguished using 〈Φ〉 and the baryon number density 〈NB〉. The quarky-
onic phase is characterized by 〈Φ〉 = 0 indicating the system confined and
non-vanishing 〈NB〉 above µB = MB with a baryon mass MB. The phase
structure in large Nc is shown in Fig. 1.

Fig. 1. The phase diagram in large Nc proposed in [2].

A possible deformation of the phase boundaries in Fig. 1 together with
the chiral phase transition can be described using a chiral model coupled
to the Polyakov loop [5]. The Nambu–Jona-Lasinio model with Polyakov
loops (PNJL model) has been developed to deal with chiral dynamics and
“confinement” simultaneously [6]. The model describes that only three-quark
states are thermally relevant below the chiral critical temperature, which
is reminiscent of confinement. Fig. 2 shows the two transition lines for
Nc = ∞ and for Nc = 3 in the two-flavored PNJL model. In the large Nc

limit assuming that the system is confined, the gap equations for the order
parameters 〈q̄q〉 and 〈Φ〉 become two uncorrelated equations. Consequently,
the quark dynamics carries only a µ dependence and the Polyakov loop sector
does only a T dependence. Finite Nc corrections make the transition lines
bending down. The crossover for deconfinement shows a weak dependence
on µ which is a remnant of the phase structure in large Nc. One finds that for
Nc = 3 deconfinement and chiral crossover lines are on top of each other in
a wide range of µ. A critical point associated with chiral symmetry appears
around the junction of those crossovers.

The clear separation of the quarkyonic from hadronic phase is lost in
a system with finite Nc. Nevertheless, an abrupt change in the baryon
number density would be interpreted as the quarkyonic transition which
separates meson dominant from baryon dominant regions. In fact, a steep
increase in the baryon number density and the corresponding maximum in
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Fig. 2. The phase diagram of a PNJL model for different Nc [5]. Two straight lines
indicate the deconfinement and chiral phase transitions for Nc =∞ and the lower
curves for Nc = 3.

its susceptibility χB are driven by a phase transition from chirally broken
to restored phase in most model-approaches using constituent quarks. One
might then consider the chirally symmetric confined phase as the quarkyonic
phase.

The constituent quarks are however unphysical in confined phase. It is
not obvious to have a realistic description of hadrons from chiral quarks.
In particular, chiral symmetry restoration for baryons must be worked out.
Two alternatives for chirality assignment are known [7] and it remains an
open question which scenario is preferred by nature [8]: (i) in the naive
assignment, dynamical chiral symmetry breaking generates a baryon mass
which thus vanishes at the restoration. (ii) in the mirror assignment, dy-
namical chiral symmetry breaking generates a mass difference between parity
partners and the chiral symmetry restoration does not necessarily dictate the
chiral partners being massless. If the chiral invariant mass is not very small,
the baryon number density is supposed to be insensitive to the quarkyonic
transition.

Besides, it seems unlikely that the chirally-restored confined phase is re-
alized in QCD on the basis of the anomaly matching: external gauge fields,
e.g. photons, interacting with quarks lead to anomalies in the axial cur-
rent. Since there are no Nambu–Goldstone bosons in chiral restored phase,
the anomalous contribution must be generated from the triangle diagram in
which the baryons are circulating. In three flavors, however, the baryons
forming an octet do not contribute to the pole in the axial current because
of the cancellations [9]. The mirror scenario has nothing to do with this
problem because the sign of the axial couplings to the positive and negative
parity states are relatively opposite. It is indispensable to any rigorous argu-
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ment for this taking account of the physics around the Fermi surface, which
could lead to a possibility of the chrially restored phase with confinement.
The anomaly matching conditions at finite temperature and density are in
fact altered, see e.g. [10].

3. Role of the tetra-quark at finite density

There is a possibility of two different phases with broken chiral symme-
try distinguished by the baryon number density. An alternative pattern of
spontaneous chiral symmetry breaking was suggested in the context of QCD
at zero temperature and density [11–13]. This pattern keeps the center of
chiral group unbroken, i.e.

SU(Nf )L × SU(Nf )R → SU(Nf )V × (ZNf
)A , (1)

where a discrete symmetry (ZNf
)A is the maximal axial subgroup of

SU(Nf )L×SU(Nf )R. The center ZNf
symmetry protects a theory from con-

densate of quark bilinears 〈q̄q〉. Spontaneous symmetry breaking is driven
by quartic condensates which are invariant under both SU(Nf )V and ZNf

transformation. Although meson phenomenology with this breaking pattern
seems to explain the reality reasonably [11], this possibility is strictly ruled
out in QCD both at zero and finite temperatures but at zero density since
a different way of coupling of Nambu–Goldstone bosons to pseudo-scalar
density violates QCD inequalities for density–density correlators [14]. How-
ever, this does not exclude the unorthodox pattern in the presence of dense
matter. In a system with the breaking pattern (1) the quartic condensate is
the strict order parameter which separates different chirally-broken phases.

It has been shown that the phase, where the symmetry is spontaneously
broken due to the higher-dimensional operator, is realized as a meta-stable
state in an O(2) scalar model [15]. Another interesting observation came
out from the Skyrme model on crystal: a new intermediate phase where a
skyrmion turns into two half skyrmions was numerically found [16]. This
phase is characterized by a vanishing quark condensate 〈q̄q〉 and a non-
vanishing pion decay constant. Although the above non-standard pattern
of symmetry breaking (1) was not imposed in the Skyrme Lagrangian, the
result could suggest a dynamical emergence of new symmetries in dense
environment.

4. The phase diagram and observables

Assuming the symmetry breaking pattern (1) at finite density, it has
been shown that an intermediate phase between chiral symmetry broken
and its restored phases can be realized using a general Ginzburg–Landau
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free energy [17]. A 2-quark state M in the fundamental and a 4-quark state
Σ in the adjoint representation are introduced as1

Mij =
1√
2

(
σδij + iφaτaij

)
, Σab =

1√
3
χδab +

1√
2
εabcψc , (2)

where the flavor indices run (i, j) = 1, 2 and (a, b, c) = 1, 2, 3 and Pauli
matrices τa = 2T a with Tr[T aT b] = δab/2. σ and χ represent scalar fields
and φ and ψ pseudoscalar fields, and εijk is the total anti-symmetric tensor
with ε123 = 1. The pion decay constant is read from the Noether current as

Fπ =
√
σ2

0 + 8
3χ

2
0 , (3)

with χ0 and σ0 being the expectation values of χ and σ, determined from the
gap equations. One can deduce a potential in the mean field approximation,
which with an explicit breaking term is obtained as2

V (σ, χ) = Aσ2 +Bχ2 + σ4 + χ4 − hσ + Cσ2χ+Dχ3 + Fσ2χ2 . (4)

A phase diagram of this model is shown in Fig. 3. There are three dis-
tinct phases characterized by two order parameters: Phase I represents the
system where both chiral symmetry and its center are spontaneously broken
due to non-vanishing expectation values χ0 and σ0. The center symmetry
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Fig. 3. Phase diagram with C = −1, D = F = 0 and h = 0 [17]. The solid
and dashed lines indicate first and second order phase boundaries, respectively.
One tricritical point, TCP1, is located at (A,B) = (0, 1/4) and another, TCP2, at
(A,B) = (1/4,−1/8). The triple point represented by T is at (A,B) = (1/8, 0).

1 We restrict ourselves to a two-flavor case.
2 A similar potential was considered for a system with 2- and 4-quark states under the
symmetry breaking pattern without unbroken center symmetry in [18] where their
4-quark states are chiral singlet and the potential does not include quartic terms in
fields.
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is restored when σ0 becomes zero. However, chiral symmetry remains bro-
ken as long as χ0 is non-vanishing, indicated by phase II where the pure
4-quark state is the massless Nambu–Goldstone boson. The chiral symme-
try restoration takes place under χ0 → 0 which corresponds to phase III.
The phases II and III are separated by a second-order line, while the broken
phase I from II or from III is by both first- and second-order lines. Accord-
ingly, there exist two tricritical points (TCPs) and one triple point. One
of these TCP, TCP2 in Fig. 3, is associated with the center Z2 symmetry
restoration rather than the chiral transition. The other coefficients D and F
change the topology of the phase diagram and a TCP1 turns to be a critical
point depending on its sign even for h = 0.

With an explicit breaking of chiral symmetry one would draw a phase
diagram mapped onto (T, µ) plane as in Fig. 4. The intermediate phase
remains characterized by a small condensation |σ0| � |χ0|. One would
expect a new critical point associated with the restoration of the center
symmetry, CP2, rather than that of the chiral symmetry if dynamics prefers
a negative coefficient of the cubic term in χ. Multiple critical points in
principle can be observed as singularities of the quark number susceptibility.

µ
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chiral sym. broken

<σ> = 0

I

II

<χ> = 0

& deconfined

III

<χ> = 0 <χ> = 0
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Fig. 4. Schematic phase diagram mapped onto (T, µ) plane. The lines do not
distinguish the order of phase transitions. The critical point can appear on the
boundary that separates the phase I from III at low µ and/or the phase I from II
at intermediate µ [17].

It has been suggested that a similar critical point in lower temperature
could appear in the QCD phase diagram based on the two-flavored Nambu–
Jona-Lasinio model with vector interaction [19] and a Ginzburg–Landau
potential with the effect of axial anomaly in three flavors [20]. There the
interplay between the chiral (2-quark) condensate and BCS pairings plays
an important role. In our framework without diquarks, the critical point is
driven by the interplay between the 2-quark and 4-quark condensates, where
anomalies have nothing to do with its appearance. Besides, the universality
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class which the critical point in our model belongs to is expected to be
different from the anomaly-induced one since spontaneous breaking of U(1)B
is not imposed in (1).

Appearance of the above intermediate phase seems to have a similarity to
the notion of Quarkyonic Phase. The transition from hadronic to quarkyonic
world can be characterized by a rapid change in the net baryon number
density. In our model this feature is driven by the restoration of center
symmetry and is due to the fact that the Yukawa coupling of χ to baryons
is not allowed by the Z2 invariance. Fig. 5 shows an expected behavior of
the quark (baryon) number susceptibility which exhibits a maximum when
across the Z2 cross over. This can be interpreted as the realization of the
quarkyonic transition in Nc = 3 world. How far µz2 from µchiral is depends
crucially on its dynamical-model description. Thus, the present analysis does
not exclude the possibility that both transitions take place simultaneously
and in such case enhancement of χB is driven by chiral phase transition.
The phase with χ0 6= 0 and σ0 = 0 does not seem to appear in the large Nc

limit [13–15]. It would be expected that including 1/Nc corrections induce
a phase with unbroken center symmetry.
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Fig. 5. The behavior of the baryon number susceptibility as a function of chemical
potential.

5. Conclusions

We have discussed the phases in dense QCD from chiral approaches along
with the anomaly matching which is a field-theoretical requirement. A possi-
bility of a non-standard breaking pattern leads to a new phase where chiral
symmetry is spontaneously broken while its center symmetry is restored.
This might appear as an intermediate phase between chirally broken and
restored phases in (T, µ) plane. The appearance of this phase also suggests
a new critical point in low temperatures. A tendency of the center symmetry
restoration is carried by the net baryon number density which shows a rapid
increase indicating baryons more activated, and this is reminiscent of the
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quarkyonic transition. Dynamical breaking of chiral symmetry SU(Nf )L×
SU(Nf )R down to SU(Nf )V×(ZNf

)
A
should be addressed in microscopic cal-

culations using the Swinger–Dyson equations or Nambu–Jona-Lasinio type
models with careful treatment of the quartic operators. The properties of
baryons near the chiral phase transition are also an issue to be clarified.
Depending on the chirality assignment to baryons, equations of state may
be altered. In this respect, it attracts an interest that a top–down holo-
graphic QCD model predicts the same sign of the axial couplings to the
parity partners and g(+)

A /g
(−)
A ∼ 2 [21].

I am grateful for fruitful collaboration with M. Harada, L. McLerran,
K. Redlich and S. Takemoto. The work has been supported in part by the
DFG cluster of excellence “Origin and Structure of the Universe”.

REFERENCES

[1] C. Sasaki, Nucl. Phys. A830, 649C (2009).
[2] L. McLerran, R.D. Pisarski, Nucl. Phys. A796, 83 (2007); Y. Hidaka,

L.D. McLerran, R.D. Pisarski, Nucl. Phys. A808, 117 (2008).
[3] L. McLerran, Acta Phys. Pol. B Proc. Suppl. 3, 631 (2010), this issue.
[4] R.D. Pisarski, talk presented at the EMMI Workshop and XXVI Max Born

Symposium Wrocław, Poland, July 9–11, 2009.
[5] L. McLerran, K. Redlich, C. Sasaki, Nucl. Phys. A824, 86 (2009).
[6] K. Fukushima, Acta Phys. Pol. B Proc. Suppl. 3, 567 (2010), this issue.
[7] C.E. Detar, T. Kunihiro, Phys. Rev. D39, 2805 (1989); Y. Nemoto, D. Jido,

M. Oka, A. Hosaka, Phys. Rev. D57, 4124 (1998); D. Jido, Y. Nemoto, M. Oka,
A. Hosaka, Nucl. Phys. A671, 471 (2000); H.C. Kim, D. Jido, M. Oka, Nucl.
Phys. A640, 77 (1998); D. Jido, T. Hatsuda, T. Kunihiro, Phys. Rev. Lett.
84, 3252 (2000).

[8] R.L. Jaffe, D. Pirjol, A. Scardicchio, Phys. Rev. Lett. 96, 121601 (2006); Phys.
Rep. 435, 157 (2006).

[9] M.A. Shifman, Phys. Rep. 209, 341 (1991) [Sov. Phys. Usp. 32, 289 (1989
UFNAA,157,561–598.1989)].

[10] H. Itoyama, A.H. Mueller, Nucl. Phys. B218, 349 (1983); R.D. Pisarski, Phys.
Rev. Lett. 76, 3084 (1996); R.D. Pisarski, T.L. Trueman, M.H.G. Tytgat,
Phys. Rev. D56, 7077 (1997); S.D.H. Hsu, F. Sannino, M. Schwetz, Mod.
Phys. Lett. A16, 1871 (2001).

[11] M. Knecht, J. Stern, arXiv:hep-ph/9411253;
J. Stern, arXiv:hep-ph/9712438, arXiv:hep-ph/9801282.

[12] B. Holdom, G. Triantaphyllou, Phys. Rev. D51, 7124 (1995); Phys. Rev. D53,
967 (1996); B. Holdom, Phys. Rev. D54, 1068 (1996).



The Phase Structure of Dense QCD from Chiral Models 667

[13] P. Maris, Q. Wang, Phys. Rev. D53, 4650 (1996); F.S. Roux, T. Torma,
B. Holdom, Phys. Rev. 61, 056009 (2000).

[14] I.I. Kogan, A. Kovner, M.A. Shifman, Phys. Rev. D59, 016001 (1999).
[15] Y. Watanabe, K. Fukushima, T. Hatsuda, Prog. Theor. Phys. 111, 967 (2004).
[16] B.Y. Park, D.P. Min, M. Rho, V. Vento, Nucl. Phys. A707, 381 (2002);

H.J. Lee, B.Y. Park, D.P. Min, M. Rho, V. Vento, Nucl. Phys. A723, 427
(2003); M. Rho, arXiv:0711.3895[nucl-th].

[17] M. Harada, C. Sasaki, S. Takemoto, Phys. Rev. D81 016009 (2010).
[18] A. Heinz, S. Struber, F. Giacosa, D.H. Rischke, Phys. Rev. D79, 037502

(2009).
[19] M. Kitazawa, T. Koide, T. Kunihiro, Y. Nemoto, Prog. Theor. Phys. 108, 929

(2002).
[20] T. Hatsuda, M. Tachibana, N. Yamamoto, G. Baym, Phys. Rev. Lett. 97,

122001 (2006); N. Yamamoto, M. Tachibana, T. Hatsuda, G. Baym, Phys.
Rev. 76, 074001 (2007).

[21] K. Hashimoto, T. Sakai, S. Sugimoto, Prog. Theor. Phys. 120, 1093 (2008).


