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NJL-type effective models represent a low-energy realization of QCD
and incorporate pertinent aspects such as chiral symmetry and its sponta-
neous breaking, the center symmetry in the heavy-quark limit as well as the
axial anomaly. One such model, the Polyakov-quark–meson model for three
light quark flavors, is introduced in order to study the phase structure of
strongly-interacting matter. With recent high-statistics lattice QCD sim-
ulations of the finite-temperature equation of state, a detailed comparison
with model results becomes accessible. Such comparisons allow to estimate
volume and truncation effects of quantities, obtained on the lattice and
provide possible lattice extrapolation procedures to finite chemical poten-
tial which are important to locate a critical endpoint in the QCD phase
diagram.

PACS numbers: 12.38.Aw, 11.10.Wx, 11.30.Rd, 12.38.Gc

1. Introduction

A detailed theoretical understanding of strongly-interacting matter un-
der extreme conditions is mandatory for various heavy-ion research pro-
grams. The search for possible (tri)critical endpoints in the phase diagram
is a major focus of the CBM experiment at the future FAIR facility.

Different regimes of the QCD phase diagram can be explored by em-
ploying various theoretical methods. Lattice QCD simulations are applica-
ble at zero or imaginary chemical potentials. Most simulations for (2 + 1)
flavor QCD agree that chiral symmetry is restored by a smooth crossover
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transition at µ = 0 [1] but there is still an ongoing discussion concerning
the (pseudo)critical temperatures [2]. At finite real chemical potentials the
fermion sign problem remains a considerable obstacle. Several extrapola-
tion techniques to finite chemical potentials such as the reweighting method,
imaginary chemical potential or a Taylor expansion around vanishing chemi-
cal potentials have been proposed (for an overview see [3]). Effective models,
such as the Polyakov loop NJL (PNJL) or the Polyakov-loop quark–meson
(PQM) model [4], incorporate important fundamental symmetries and the
symmetry breaking pattern of the underlying QCD but do not suffer from
the sign problem, large quark masses or finite volume restrictions. Further-
more, these type of models can be used to test certain lattice extrapolation
techniques to finite µ. For this purpose the reproduction of the lattice data
for vanishing µ is a basic prerequisite.

In this paper we compare the bulk thermodynamics of several chiral
Nf = 2 + 1 quark flavor PQM models with recent Nτ = 8 lattice data of the
HotQCD Collaboration [5]. The larger quark masses used on the lattice are
explicitly considered in the model comparison. Based on a novel differenti-
ation technique, higher derivatives of the thermodynamic potential can be
calculated very precisely [6]. This method allows to investigate convergence
properties of the Taylor expansion method used on the lattice.

2. Polyakov–quark–meson model

The Polyakov-quark–meson (PQM) model for three quark flavors is based
on the linear σ-model with quarks [7] and incorporates in addition the
Polyakov-loop field Φ(~x). The Polyakov loop is the thermal expectation
value of a color traced Wilson loop in the temporal direction. In the heavy-
quark limit Φ serves as an order parameter for the confinement/deconfinement
transition. In the deconfined high-temperature phase the center symmetry
Z(3) of QCD is spontaneously broken and as a consequence Φ is finite. How-
ever, with dynamical quarks the center symmetry is always broken and Φ as
an order parameter becomes questionable.

The PQM Lagrangian consists of a quark–meson (QM) contribution and
a Polyakov-loop potential U(Φ, Φ̄), which depends on Φ and its Hermitian
conjugate Φ̄. The uniform temporal background gauge field is coupled to the
quarks by replacing the standard derivative ∂µ in the quark contribution by
a covariant derivative Dµ = ∂µ − iAµ, Aµ = δµ0A

0 where Aµ ≡ gsA
a
µλ

a/2.
This leads to the Lagrangian

LPQM = q̄ (iD/− gφ5) q + Lm − U(Φ[A], Φ̄[A]) , (1)
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where q denotes the quark field. The interaction between the quarks and the
meson nonets is implemented by a flavor-blind Yukawa coupling g and the
meson matrix φ5 =

∑8
a=0(λa/2) (σa + iγ5πa) where the nine scalar mesons

fields are labeled by σa and accordingly the nine pseudoscalar fields by πa.
The remaining, purely mesonic contribution reads

Lm = Tr
(
∂µφ

†∂µφ
)
−m2 Tr(φ†φ)− λ1

[
Tr(φ†φ)

]2
− λ2 Tr

(
φ†φ
)2

+ c
(

det(φ) + det(φ†)
)

+ Tr
[
H(φ+ φ†)

]
, (2)

with the fields φ ≡
∑

a(λa/2) (σa + iπa). Chiral symmetry is explicitly
broken by the last term in Eq. (2) and the U(1)A-symmetry by the ’t Hooft
determinant term with constant strength c.

For the effective Polyakov-loop potential U which is constructed in terms
of Φ and Φ̄, several implementations are available. The simplest choice is
based on a Ginzburg–Landau ansatz [8]:

Upoly

T 4
= −b2

4
(
|Φ|2 + |Φ̄|2

)
− b3

6
(Φ3 + Φ̄3) +

b4
16
(
|Φ|2 + |Φ̄|2

)2
. (3)

The cubic Φ terms are required to break the U(1) symmetry of the remaining
terms down to the center symmetry, Z(3). The potential parameters are
adjusted to the pure gauge lattice data such that the equation of state and
the Polyakov-loop expectation values at finite temperature are reproduced.
An improved version [9] based on the SU(3) Haar measure results in

Ulog

T 4
= −1

2
a(T )Φ̄Φ+ b(T ) ln

[
1− 6Φ̄Φ+ 4

(
Φ3 + Φ̄3

)
− 3

(
Φ̄Φ
)2]

. (4)

The parameters are again fitted to the pure gauge lattice data. The loga-
rithmic form constrains Φ and Φ̄ to values smaller than one. Another choice
invented by Fukushima [10] is

UFuku

T 4
= − b

T 3

[
54e−a/TΦΦ̄+ ln

(
1− 6ΦΦ̄− 3(ΦΦ̄)2 + 4

(
Φ3 + Φ̄3

))]
(5)

with only two parameters a and b. The parameters also result in a first-order
transition at T0 ∼ 270MeV in the pure gauge sector but are not fitted to lat-
tice data. This potential excludes contributions of the unconfined transverse
gluons to the equation of state which are relevant at high temperatures [10].
This is important for the comparison to lattice data at higher temperatures.
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2.1. Thermodynamic potential

For three quark flavors the grand potential Ω is a function of the tem-
perature and in general three quark chemical potentials, one for each flavor.
Here we focus on a uniform quark chemical potential µ ≡ µq = µB/3. Since
we consider the isospin-symmetric case with ml ≡ mu = md, only two order
parameters, the non-strange σx and strange σy emerge [7]. The thermody-
namic potential in mean-field consists of three different contributions [11]:
the mesonic part U (σx, σy), a quark part Ωq̄q and the Polyakov-loop poten-
tial

Ω = U (σx, σy) +Ωq̄q
(
σx, σy, Φ, Φ̄

)
+ U

(
Φ, Φ̄

)
. (6)

The mesonic contribution has six parameters which are fitted to the vacuum.
For example, the Yukawa coupling g is fixed to reproduce a light constituent
quark mass of ml ≈ 300 MeV. This then yields a strange constituent quark
mass of ms ≈ 433MeV.

The temperature- and quark chemical potential dependence of the four
order parameters for the chiral and confinement/deconfinement transition
are determined as solutions of the corresponding gap equations. These cou-
pled equations are obtained by minimizing the grand potential, Eq. (6), with
respect to the four constant mean-fields 〈σ〉x, 〈σ〉y, 〈Φ〉 and

〈
Φ̄
〉
:

∂Ω

∂σx
=
∂Ω

∂σy
=
∂Ω

∂Φ
=
∂Ω

∂Φ̄

∣∣∣∣
min

= 0 , (7)

where min = {σx = 〈σx〉 , σy = 〈σy〉 , Φ = 〈Φ〉 , Φ̄ =
〈
Φ̄
〉
} labels the global

minimum.

3. Lattice comparison

In order to compare our model results with recent HotQCD lattice find-
ings [5] we have chosen a model parameter setup where the chiral and de-
confinement transition temperature coincide at µ = 0. This is the case for
mσ = 600MeV and T0 = 270MeV for all used Polyakov-loop potentials [11].
A coincidence of both transitions around Tχ ∼ 185–195MeV is also observed
in the corresponding lattice simulations [5]. However, on the lattice a ratio of
the physical strange quark mass to the light one of 10 has been used which
yields finally too heavy light-quark masses. For a proper comparison we
have therefore adjusted the pion and kaon masses in the model calculations
accordingly and use also mK = 503MeV and mπ = 220MeV. Of course,
heavier meson masses yield also slightly heavier constituent quark masses

ml ≈ 322MeV and ms ≈ 438MeV .
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As a consequence, higher transition temperatures, in particular for the chiral
transition in the light sector, are found. But both transitions, the non-
strange chiral and the deconfinement one, still coincide. The strange quark
sector is almost unaffected [11].
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Fig. 1. The normalized pressure p/pSB (left panel) and the interaction measure
∆/T 4 (right panel) as a function of temperature. The model calculations (PQM
model with various Polyakov-loop potentials and the QM model) are compared to
lattice data (Nτ = 8, p4 and asqtad actions) from [5]. The solid lines correspond
to larger pion and kaon masses as used in the lattice simulations while the dashed
lines denote the results for physical masses.

In the model calculations all thermodynamic quantities are extracted
from the grand potential. The pressure

p(T, µ) = −Ω (T, µ) (8)

is directly related to the thermodynamic potential with a suitable normaliza-
tion, p(0, 0) = 0. In Fig. 1 the pressure, normalized to the Stefan–Boltzmann
(SB) value of the PQM model, is compared to the lattice data and a quark–
meson model calculation. As expected, the QM model [7] fails in describing
the lattice data, while the PQM model results are in better agreement with
the data. The best agreement is achieved with Fukushima’s potential where
the different treatment of the transverse gluons at higher temperatures is
apparent. Around the transition the model versions with the polynomial
or logarithmic Polyakov-loop potential are closer to the lattice data. For
physical meson masses (dashed lines) the pressure is smaller.

The interaction measure, ∆ = e − 3p, indicates the breaking of scale
invariance and is given as a temperature derivative of the grand potential

∆

T 4
= T

∂

∂T

( p

T 4

)
= −T ∂

∂T

(
Ω

T 4

)
. (9)
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In lattice simulations, this quantity can be obtained directly from the trace
of the energy-momentum tensor

Θµµ
T 4

=
ε− 3p
T 4

=
∆

T 4
. (10)

It is more sensitive to finite volume and discretization effects than, e.g.,
the pressure (cf. [5]) which is displayed in Fig. 1(b). In the chirally broken
phase, the lattice data are close to all model curves. Around the transition
T ≈ Tχ Fukushima’s potential is closest to the asqtad-action data, while
the remaining two model curves are in better agreement with the p4-action
data. In general, the peak height decreases on larger lattices, in particular
for the p4-action while the asqtad-action shows a weaker Nτ dependence [5].
In contrast to the pressure, the logarithmic and polynomial Polyakov model
version do not describe the lattice data in the symmetric phase. However,
Fukushima’s ansatz approaches the data at least up to T ∼ 1.5Tχ.

In addition we also show the energy density ε and the entropy density s,
which are defined as

ε = −p+ Ts , s = −∂Ω
∂T

, (11)

in Fig. 2 as a function of temperature. Similar to the pressure, Fukushima’s
potential model version comes closest to the lattice data for T . 1.5Tχ.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0.5  1  1.5  2  2.5

ε
/T

4

T/T
χ

QM

PQM log

PQM pol

PQM Fuku

p4

asqtad
 0

 5

 10

 15

 20

 0.5  1  1.5  2  2.5

s
/T

3

T/T
χ

QM

PQM log

PQM pol

PQM Fuku

p4

asqtad

Fig. 2. The energy density ε/T 4 (left panel) and entropy density s/T 3 (right panel)
similar to Fig. 1.

4. Convergence of the Taylor expansion at finite µ

At finite chemical potential the spectrum of the Dirac operator becomes
complex making direct Monte Carlo simulations impossible. Several meth-
ods have been developed to circumvent this problem and to access at least
a region of small chemical potentials in the phase diagram, see e.g. [3].
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One such approach is based on the Taylor expansion of thermodynamic
quantities in powers of (µ/T ) around µ = 0. For the pressure it reads

p(µ/T )
T 4

=
∞∑
n=0

cn(T )
(µ
T

)n
(12)

with the coefficients

cn(T ) =
1
n!
∂n
(
p(T, µ)/T 4

)
∂ (µ/T )n

∣∣∣∣∣
µ=0

. (13)

Note that only even coefficients contribute since the QCD partition function
is CP-symmetric, i.e., Z(µ) = Z(−µ). The coefficients have been calculated
up to the eighth order by different lattice groups, for Nf = 2 see e.g. [12]
and for Nf = 2 + 1 quark flavors, see e.g. [13]. However, higher orders still
suffer from large errors.

The application of the Taylor expansion method to the PQM model
provides an opportunity to investigate and test the finite µ extrapolation
since a direct evaluation of the thermodynamic potential in the model is
possible. For example, the location of the critical endpoint (CEP) is exactly
known in the model calculation. This enables us to distinguish between
divergences related to the CEP and to the breakdown of the expansion.

However, a further difficulty emerges in the model analysis: in principle,
the grand potential is known analytically but an analytic evaluation of the
Taylor coefficients fails since the implicit temperature and chemical poten-
tial dependence of the order parameters is only known numerically via the
equations of motion Eq. (7).

Standard methods for an evaluation of numerical derivatives are ham-
pered by increasing errors, which become dominant in particular for higher
derivative orders. In order to circumvent this caveat we have developed
a novel numerical technique which is based on algorithmic differentiation
(AD). With this method the evaluation of higher derivatives becomes fea-
sible to extremely high precision. In fact, it is essentially limited only by
machine precision. Details of this method can be found in Ref. [6].

With this method we could obtain the Taylor coefficients up to 22-nd
order for the PQM model with the logarithmic Polyakov-loop potential as
shown in Fig. 3. The coefficients are very small far away from the transition
temperature and they start to oscillate with increasing amplitude within a
narrow temperature range around the transition temperature, i.e. 0.95Tχ <
T < 1.05Tχ. This signals a complex µ singularity of the thermodynamic
potential close to the real axis. In the chiral limit this singularity would be
exactly on the real axis as a reflection of a real phase transition.
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Fig. 3. The Taylor coefficients c6 to c22 obtained in the PQM model with the
logarithmic Polyakov-loop potential (T0 = 270MeV,mσ = 600MeV).

By means of the Taylor expansion method it is further possible to study
several thermodynamic quantities at small µ. One example is the pressure
difference

∆p(T, µ)
T 4

=
p(T, µ)− p(0, 0)

T 4
=

∑
n=2,4,...

cn(T )
(µ
T

)n
. (14)

In Fig. 4 we show ∆p for µ/T = 0.8 and µ/T = 1.0 for various expan-
sion orders in comparison with the model result. The ratios µ/T are slightly
below and above the critical value µc/Tc ∼ 0.9 at the CEP. Although the
transition is still a crossover at µ/T = 0.8, a divergence is observed in the
Taylor expansion. The divergence becomes more prominent with increas-
ing orders. However, a direct model evaluation of the pressure, labeled as
“PQM” in the figure, shows a smooth behavior. The divergence in the coef-
ficients is clearly a signal for the breakdown of the Taylor expansion, which
is also related to the oscillations in the coefficients. This occurs already for
µ/T < 1 and indicates the importance of the higher order coefficients. For
temperatures just below the breakdown at T ∼ 0.95Tχ the higher orders
improve the observed agreement with the “PQM” curve. A similar behavior
is also seen for the µ/T = 1 case. At higher temperatures T � Tχ the coef-
ficients become small again and do not longer contribute. As a consequence
the Taylor expansion can again reproduce the PQM result.
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Fig. 4. The pressure difference ∆p/T 4 for different ratios of µ/T (left panel µ/T =
0.8, right panel µ/T = 1.0) and orders of the Taylor expansion. The black line,
labeled with “PQM”, is the model calculation. The vertical dashed line indicates
the radius of convergence.

For a deeper understanding of the breakdown of the Taylor expansion it
is instructive to investigate its convergence radius. It can be obtained from
the definition

r = lim
n→∞

r2n = lim
n→∞

∣∣∣∣ c2n

c2n+2

∣∣∣∣1/2 . (15)

It is not yet known how well the radius r is estimated by rn for a finite value
n. The estimated r24 is indicated by the dashed vertical line in Fig. 4. It
coincides with the occurrence of the divergence observed in∆p at 24th order.
From the different rn we expect that the true convergence radius is smaller
than r24 for the given µ/T ratios. For more details see [14]. A detailed study
concerning the prospects of locating the CEP within the Taylor expansion
will be given in [15].

5. Summary

In this paper we have presented results for the bulk thermodynamics
of a (2 + 1) flavor PQM model with three different effective Polyakov-loop
potentials. The model parameters are adjusted at vanishing chemical po-
tential to produce a coincidence of the chiral and deconfinement transition
for all three Polyakov-loop potentials. For a better comparison with the
recent HotQCD lattice data we further tuned the pion and Kaon masses
to these values which are used in the lattice simulations. All three PQM
model versions yield a good reproduction of the lattice data for tempera-
tures T < 1.5Tχ. Furthermore, the Taylor expansion of the pressure differ-
ence for finite chemical potentials is also investigated. For this purpose, a
novel algorithmic differentiation technique has been developed. The Taylor
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coefficients up to 24th order could be obtained in the PQM model for the
first time. The knowledge of these higher Taylor coefficients allows for a
systematic study of convergence properties of the expansion.
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