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We discuss reorganizing finite temperature perturbation theory using
hard-thermal-loop (HTL) perturbation theory in order to improve the con-
vergence of successive perturbative approximations to the free energy of a
gauge theory. We briefly review the history of the technique and present
new results for the three-loop HTL-improved approximation for the free
energy of QED. We show that the hard-thermal-loop perturbation reor-
ganization improves the convergence of the successive approximations to
the QED free energy at intermediate coupling, e ∼ 2. The reorganization
is gauge invariant by construction, and due to cancellation among various
contributions, one can obtain a completely analytic result for the resummed
thermodynamic potential at three loops.
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1. Introduction

In the early 1990s the free energy of a massless scalar field theory was
calculated to order g4 in Refs. [1, 2]. This was quickly followed by sim-
ilar calculations in QED [3] and QCD [2]. The scalar, QED, and QCD
free energies to order g5 were then obtained in Refs. [4, 5], Refs. [6, 7] and
Refs. [8,9], respectively. Recent results have extended the calculation of the
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QCD free energy by determining the coefficient of the g6 log(g) contribu-
tion [10]. For massless scalar φ4 the perturbative free energy is now known
to order g6 [11] and g8 log(g) [12].

However, the resulting weak-coupling approximations, truncated order-
by-order in the coupling constant, are poorly convergent unless the coupling
constant is extremely small. For example, simply comparing the magnitude
of low-order contributions to the Nf = 3 QCD free energy one finds that
the g3

s contribution is smaller than the g2
s contribution only for gs ∼< 0.9

(αs ∼< 0.07). This is a troubling situation since at phenomenologically acces-
sible temperatures near the critical temperature for the QCD deconfinement
phase transition, the strong coupling constant is on the order of gs ∼ 2.

The poor convergence of finite-temperature perturbative expansions of
the free energy is not limited to QCD. The same behavior can be seen in
weak-coupling expansions in scalar field theory [13, 14] and QED [6]. In
Fig. 1 we show the successive perturbative approximations to the QED free
energy. As can be seen from this figure, at couplings larger than e ∼ 1
the QED weak-coupling approximations also exhibit poor convergence. For
this reason a concerted effort has been put forth to find a reorganization of
finite-temperature perturbation theory which converges at phenomenologi-
cally relevant couplings.
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Fig. 1. Successive perturbative approximations to the QED pressure (negative of
the free energy). Each band corresponds to a truncated weak-coupling expansion
accurate to order e2, e3, e4, and e5, respectively. Shaded bands correspond to
variation of the renormalization scale µ between πT and 4πT .

There are several ways of systematically reorganizing the perturbative ex-
pansion to improve its convergence and the various approaches have been re-
viewed in Refs. [15–17]. Here we will describe recent advances in the applica-
tion of hard-thermal-loop perturbation theory (HTLpt) [18–22]. The HTLpt
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method is inspired by variational perturbation theory [23–26] and is a gauge-
invariant extension of scalar screened perturbation theory (SPT)
[13, 14, 27, 28]. The basic idea of the technique is to add and subtract an
effective mass term from the bare Lagrangian and to associate the added
piece with the free Lagrangian and the subtracted piece with the interac-
tions. However, in gauge theories, one cannot simply add and subtract a
local mass term since this would violate gauge invariance. Instead one adds
and subtracts a HTL improvement term which modifies the propagators
and vertices in such a way that the framework is manifestly gauge-invariant.
The free part of the Lagrangian then includes the HTL self-energies and the
remaining terms are treated as perturbations.

In this brief proceedings review we present results of a calculations of the
QED free energy (pressure) to three-loop order in HTLpt based on the work
detailed in Ref. [29]. As we will show, the next-to-leading order (NLO) and
next-to-next-to-leading order (NNLO) HTLpt resummed QED free energy
give approximations which show improved convergence for couplings as large
as e ∼ 2.5 (see Fig. 2). In addition, we compare our results to those obtained
using the 2PI Φ-derivable approach [30] and show that at three loops the
agreement between the HTLpt and Φ-derivable approaches is quite good.

2. Formalism

The Lagrangian density for massless QED in Minkowski space is

LQED = −1
4 FµνF

µν + iψ̄γµDµψ + Lgf + Lgh + ∆LQED .

Here the field strength is Fµν = ∂µAν − ∂νAµ and the covariant derivative
is Dµ = ∂µ + ieAµ. The ghost term Lgh depends on the gauge-fixing term
Lgf . We will use dimensional regularization with a renormalization scale µ
and covariant gauge fixing such that the ghost terms decouple.

Hard-thermal-loop perturbation theory is a reorganization of the pertur-
bation series for thermal gauge theories. In the case of QED, the Lagrangian
density is written as

L = (LQED + LHTL)
∣∣∣
e→

√
δe

+ ∆LHTL . (2.1)

The HTL improvement term is

LHTL = −1
2 (1− δ)m2

DFµα

〈
yαyβ

(y · ∂)2

〉
y

Fµβ

+(1− δ) im2
f ψ̄γ

µ

〈
yµ

y ·D

〉
y

ψ , (2.2)



730 M. Strickland, N. Su, J.O. Andersen

where yµ = (1, ŷ) is a light-like four-vector, and 〈. . .〉y represents an aver-
age over the directions of ŷ. The term (2.2) has the form of the effective
Lagrangian that would be induced by a rotationally-invariant ensemble of
charged sources with infinitely high momentum. The parameter mD can
be identified with the Debye screening mass and the parameter mf can be
identified as the induced finite-temperature electron mass. HTLpt is defined
by treating δ as a formal expansion parameter and expanding order by or-
der in δ around δ = 1. This generates loops with fully dressed propagators
and vertices and also automatically generates the counterterms necessary to
remove the dressing as one proceeds to higher loop orders.

If the expansion in δ could be calculated to all orders, the final result
would not depend onmD ormf . However, any truncation of the expansion in
δ produces results that depend onmD andmf . Some prescription is required
to determine mD and mf as a function of T and e. For example, one can
choose to treat both as variational parameters that should be determined by
minimizing the free energy or one can fix mD and mf using a perturbative
prescription. We will compare both methods. We will obtain the thermo-
dynamic potential Ω(T, e,mD,mf , µ, δ = 1) which is a function of the mass
parameters mD and mf . The free energy F is obtained by evaluating the
thermodynamic potential at the appropriate values of the thermal masses.
Other thermodynamic functions can then be obtained by taking appropriate
derivatives of F with respect to T .

3. Results

In this section we present the final renormalized thermodynamic poten-
tial explicitly through order δ2, also known as NNLO, as obtained by us
in Ref. [29]. The final NNLO expression is completely analytic; however,
there are some numerically determined constants which remain in the final
expressions atNLO.

3.1. Next-to-leading order
The renormalized NLO thermodynamic potential is

ΩNLO = −π
2T 4

45

{
1 +

7
4
Nf − 15m̂3

D −
45
4

(
log

µ̂

2
− 7

2
+ γ +

π2

3

)
m̂4

D

+ 60Nf

(
π2 − 6

)
m̂4

f +Nf
α

π

[
− 25

8
+ 15m̂D + 5

(
log

µ̂

2
− 2.33452

)
m̂2

D

−45
(

log
µ̂

2
+2.19581

)
m̂2

f −30
(

log
µ̂

2
− 1

2
+γ + 2 log 2

)
m̂3

D+180m̂Dm̂
2
f

]}
, (3.1)

where we have introduced the dimensionless parameters m̂D = mD/(2πT ),
m̂f = mf/(2πT ), and µ̂ = µ/(2πT ).
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3.2. Next-to-next-to-leading order

The resulting NNLO thermodynamic potential is

ΩNNLO = −π
2T 4
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. (3.2)

3.3. Free energy

The mass parametersmD andmf in hard-thermal-loop perturbation the-
ory are in principle completely arbitrary. To complete a calculation, it is
necessary to specify mD and mf as functions of e and T . In Ref. [29] we con-
sidered two possible mass prescriptions in order to see how much the results
vary given the two different assumptions. First we considered the variational
solutions for the thermal masses and second we considered using the e5 per-
turbative expansion of the Debye mass [7,31] and the e3 perturbative expan-

Fig. 2. A comparison of the renormalization scale variations between NLO and
NNLOHTLpt predictions for the free energy of QED with Nf =1 and the variatio-
nal Debye mass (left) and using the perturbative thermal masses (right). The bands
correspond to varying the renormalization scale µ by a factor of 2 around µ = 2πT .
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sion of the fermion mass [32]. The resulting predictions for the free energy
are shown in Fig. 2. As can be seen from these figures both the variational
and perturbative mass prescriptions seem to be consistent when going from
NLO to NNLO. As a further check of our results in Fig. 3 we show a com-
parison of our NNLO HTLpt results with a three-loop calculation obtained
previously using a truncated three-loop Φ-derivable approximation [30]. As
can be seen from this figure, there is very good agreement between the NNLO
Φ-derivable and HTLpt approaches out to large coupling.
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Fig. 3. A comparison of the predictions for the free energy of QED with Nf = 1
between three-loop Φ-derivable approximation [30] and NNLO HTLpt at µ = 2πT .

3.4. Conclusions and outlook

In this paper we discussed reorganizing finite temperature perturbation
theory using HTLpt in order to improve the convergence of successive per-
turbative approximations to the free energy of QED. We presented results
of a recent three-loop HTLpt calculation of the pressure in QED [29] and
showed that the HTLpt reorganization improves the convergence of the suc-
cessive approximations to the QED free energy at intermediate coupling,
e ∼ 2. We studied two different mass prescriptions and showed that the
results for the free energy using both prescriptions were the same to an ac-
curacy of 0.6% at e = 2.4. We also compared the HTLpt three-loop result
with a three-loop Φ-derivable approach [30] and found agreement at the sub-
percentage level. In closing, we mention that the HTLpt reorganization is
gauge invariant by construction we were able to obtain a completely analytic
result for the resummed QED thermodynamic potential at three loops. This
gives us confidence to apply the method also to full QCD.
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