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We analyze the thermodynamical properties of color superconducting
quark matter in the isotropic color spin locking (iso-CSL) phase at zero
temperature and finite chemical potential. We perform calculations in
the NJL model with quark–quark and quark–antiquark coupling for two
parametrizations of the coupling strength: (a) constant value and (b) log-
arithmic dependence on the chemical potential. The bulk viscosity of the
iso-CSL phase is calculated for both parametrizations for electrically neu-
tral two-flavor matter in β-equilibrium. We discuss an extension of this
model to the three-flavor case where we find that behaviour of the strange
quark mass is qualitatively different for the cases (a) and (b). In this con-
text we examine the influence of the value of QCD momentum scale ΛQCD

and investigate the stability of three-flavor quark matter in the iso-CSL
phase under compact star (CS) constraints.

PACS numbers: 04.40.Dg, 12.38.–t, 26.60.+c

1. Quark matter in the iso-CSL phase with running coupling

A sensible diagnostic tool for the state of matter in the interiors of com-
pact stars are the thermal and transport properties which determine, e.g.,
the cooling and spin evolution of CS. Based on a Nambu–Jona-Lasinio (NJL)
type model, a consistent determination of the density and temperature de-
pendence of quark masses, pairing gaps and chemical potentials under neu-
tron star constraints has been performed first in [1, 2]. The resulting phase
diagram suggests that for moderate diquark coupling strength the three-
flavor phases of the CFL-type occur only at rather high densities and render
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hybrid star configurations gravitationally unstable [3, 4]. Moreover, due to
large pairing gaps in CFL quark matter, the r-mode instabilities cannot be
damped [5] and cooling is inhibited [6]. The two-flavor quark matter at mod-
erate densities might be in the normal state since the formation of a spin-0
pairing gap (2SC phase) is inhibited by a large flavor asymmetry. Therefore,
we will focus here on the discussion of single-flavor spin-one pairing [7–9] in
quark matter under compact star constraints.

We consider here the iso-CSL phase [10,11] for which in the pairing gap
matrix ∆̂ = ∆(γ3λ2 + γ2λ5 + γ1λ7) the three antisymmetric color matrices
(λ2, λ5, λ7) are locked to the three spin matrices (γ3, γ2, γ1). It has been
demonstrated [10] that an extension of the NJL model by a running coupling
ansatz leads to a density dependence of the pairing gaps which mimicks that
of the so-called 2SC+X phase [12], for which a detailed investigation of the
cooling phenomenology for hybrid stars has been worked out [13, 14], see
also [15] for a recent discussion. While neutrino emissivity and bulk viscosity
of the iso-CSL phase have been investigated in the constant coupling NJL
model before [16], we discuss here for the first time the behaviour of the
bulk viscosity for the running coupling model.

We base our discussion on the thermodynamical potential for which
(without KMT interaction, see [17]) the flavor channels decouple in the
iso-CSL phase

Ωq(T, µ) =
∑

f=u,d,s

Ω(T, µf ) , (1)

and the contribution of a single flavor in mean field approximation is

Ω(T, µf ) =
(Mf −mf )2

8GS(T, µf )
+

∆2
f

8GD(T, µf )

−
6∑
r=1

∫
d3 p

(2π)3

[
Ef,r(p)+ 2T ln

(
1+ e−Ef,r(p)/T

)]
−Ω(0, 0) , (2)

whereMf andmf are the dynamical and current quark masses, respectively,
and the dispersion relations of all modes Ef,r(p) have nonvanishing gaps [10]
with the lowest excitation energy being of the order of 1 MeV, as required
from cooling phenomenology. Here, the vacuum contribution Ω0 is sub-
tracted in order to guarantee vanishing pressure and energy density of the
vacuum. For the running coupling strengths GS(T, µf ) in the scalar meson
channel and GD(T, µf ) = 3GS(T, µf )/8 in the spin-one diquark channel we
use two parameterizations: (a) constant coupling GS(T, µf ) = GS = const.
and (b) chemical potential dependent coupling [10]
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GS(µf ) = GS RΛQCD
(µf ) ,

RΛQCD
(µf ) = ln

(
µc

ΛQCD

)/
ln
(

µf
ΛQCD

)
. (3)

The function R(µf ) is motivated by the logarithmic running of the one-loop
beta function of QCD, where ΛQCD is the QCD momentum scale and µc

is the critical chemical potential for chiral phase transition of up and down
quarks. For the calculations of the masses and iso-CSL pairing gaps we
employ the parameters of the NJL model for Mu,d(p = 0) = 380MeV from
Ref. [18]. Results for ΛQCD = 300MeV are shown in Fig. 1. The difference
in the behavior of the chiral condensate for the two parametrizations is not
altered qualitatively. One can notice that the dynamical mass decreases
more rapidly for the case of chemical potential dependent coupling. The
behavior of the pairing gap is qualitatively different in the two cases. When
the coupling is kept constant the gap is an increasing function of chemical
potential while for the running coupling ansatz (3) the gap is decreasing
with µf . We can also notice that in the second case the gap is by an order
of magnitude smaller than in constant coupling case. It has been argued
in [10, 15] that such a behavior of pairing gap is required to explain the
observed cooling curves for neutron stars.
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Fig. 1. Left panel: Comparison of dynamical mass functions (M = Mu, Md) and
iso-CSL diquark gaps (∆ = ∆u, ∆d) for constant and chemical potential dependent
coupling as a function of the chemical potential µ = µu, µd. Right panel: Strange
quark mass Ms as a function of the strange chemical potential µ = µs in the
constant coupling model (solid line) and in the running coupling model for three
values ofΛQCD.
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2. Bulk viscosity in the two-flavor iso-CSL phase

For investigations of the stability of fastly rotating millisecond pulsars
against r-modes [19, 20] one can derive constraints [5] which are based on
the bulk and shear viscosities as key quantities. We discuss here the bulk
viscosity for the iso-CSL phase applying an approach given in Ref. [21]

ζ =
λC2

ω2 + (λB)2
, (4)

with the coefficients functions

C =
M2
u

3µu
−
M2
d

3µd
+
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3π

[
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d

µd

(
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− 2

3
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− M2

u
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,
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2
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4

∞∫
0
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where the functions
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×
(
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2
d + 1

)−1
, (6)

characterize the influence of the superconducting gaps ∆f on the bulk vis-
cosity. The coefficients af,r for r = 1, 3, 5 stem from the corresponding
dispersion relations Ef,r(p) in Eq. (2) and are defined in Ref. [10]. The
gaps, obtained from the minimization of (1) fulfill in general ∆u 6= ∆d. In
Fig. 2 we compare bulk viscosities for our two parameterizations. Firstly,
we observe that for the running coupling model the location of the max-
imum is slightly shifted towards lower temperatures. Secondly, we notice
that the lower pairing gap for the running coupling model results in a lower
temperature (∼ 2.5MeV) for the transition to the “normal” behavior of the
bulk viscosity when compared with the constant coupling case (∼ 6.5MeV).
Nevertheless, the influence of the small pairing gaps on the bulk viscosity is
minor when compared to that of the mass function which is responsible for
the fact that the bulk viscosity in the iso-CSL phase is sufficiently large to
circumvent r-mode instability.
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Fig. 2. Left panel: Bulk viscosity in 2 flavor CSL phase for constant and running
coupling cases at the chemical potential µ=409MeV for a typical millisecond pulsar
frequency ω=1 kHz. Right panel: Pressure of quark matter for two values of ΛQCD

in comparison to a modern EoS for nuclear matter (DBHF). The crossing point of
a quark matter and the DBHF curves indicates a deconfinement phase transition.

3. Strange quarks and the EoS

In order to answer the question whether the phases discusssed above
could play a role for the interiors of compact stars one has to evaluate
the EoS and solve the Tolman–Oppenheimer–Volkoff equations for hydro-
dynamic stability. From the meanfield thermodynamical potential (1) we
obtain the equation of state in the quark sector of QCD. The present run-
ning coupling model leads to a behavior of the strange mass shown in the
right panel of Fig. 1. It results in a lowering of the onset of strange quark
degrees of freedom above the critical chemical potential µc = 375MeV for
the chiral transition in the light quark sector. The discussion of the thermo-
dynamics we restrict to the case ΛQCD = 200 MeV and ΛQCD = 350MeV
shown in the right panel of Fig. 2. We can observe that the quark pressure
exhibits an instability associated with the running of the coupling. Ther-
modynamic instabilities of such kind have been observed before in confining
quark models. They can be circumvented by a phase transition construc-
tion to the hadronic phase. In Fig. 2 we provide as an example the Dirac–
Brueckner–Hartree-Fock (DBHF) EoS under neutron star constraints, taken
from Ref. [4]. The critical baryochemical potential where the corresponding
deconfinement phase transition should occur is too large to be relevant for
compact star applications.

4. Summary

We can conclude that the iso-CSL phase with the suggested running
coupling generalization of the NJL model yields pairing gaps consistent with
the cooling phenomenology of NS. It also leads to marginal modifications of
the bulk viscosity which remains large enough to prevent r-mode instabilities
of millisecond pulsars.
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The question whether strange quarks appear in NS interiors remains
open. The present running coupling model leads to a thermodynamic insta-
bility in the quark sector caused by a negative partial pressure for strange
quarks. Circumventing this problem by a phase transition construction to
hadronic matter leads to rather high values of the critical baryochemical po-
tential for the deconfinement transition which would exclude quark matter
in compact star interiors. Nevertheless, the chiral phase transition might
very well occur at moderate densities so that a chirally symmetric hadronic
phase (“quarkyonic matter” [22,23]) could be expected.
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